,襟江投资有限公司 不开发区中试孵化产业园项目 环境影响报告书 (征求意见稿)

目 录

1.	概述			1
	1.1.	项目由来		1
	1.2.	项目特点		
	1.3.	环境影响评价工作程序		77
	1.4.	关注的主要环境问题		1 3 3
	1.5.	初步分析判定		4
	1.6.	结论		آ م 42
2.	总 加	74 70	X / x	X,
) [] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	ᄻᅹᆚᆇᄪ		
	2.1.	编制依据		43
	2.2.	评价因于和评价标准		50
	2.3.	评价工作等级及评价重点	<i>\$100.</i> 55	66
	2.4.	评价范围及环境敏感区	7,3	76
	2.5.	相关规划及环境功能区划		79
3.	现有项	目工程分析		98
	3.1.	环保手续履行情况		98
	3.2.	排污许可执行情况		98
	3.3.	建设内容		98
	3.4.	污染物产排情况分析		100
	3.5.	现有项目存在的环境问题及"以************************************		100
4.	拟建项	初步分析判定 编制依据 评价因子和评价标准 评价范围及环境敏感区 相关规划及环境功能区划 目工程分析 环保手续履行情况 排污许可执行情况 建设内容 污染物产排情况分析 现有项目存在的环境问题及"以及"者老"措施 目工程分析		101
	4.1	项目概况		101
	4.1.	项目概况	•••••	101
	7.2.			
	4.3.			
	4.4.	****中试项目7年分析		
	4.5.	****中试项量程分析		
	4.6.	****中证明工程分析	销误!	木定乂节签。
	4.7.	**** 中		
	4.8.	**************************************	错误!	未定义于签。 + + + × + × **
	4.9.	中试项目工程分析		
	4.10	全 程分析室工程分析		
		中试基地自身运营工程分析		
	432.	污染物产排情况汇总		
終	\4 .13.	非正常工况分析		
`	4.14.	环境风险识别		
_	4.15.	环境风险事故情形分析		
5.		状调查与评价		139
	5.1.	自然环境概况		139
	5.2.	环境质量现状监测与评价		142
	5.3.	区域污染源调查		155

6.	环境影响	响预测与评价	. 158
	6.1.	大气环境影响预测与评价	. 158
	6.2.	地表水环境影响预测与评价	
	6.3.	地下水环境影响预测与评价	. 189
	6.4.	声环境影响预测与评价	
	6.5.	固体废物环境影响分析	. 200
	6.6.	土壤环境影响分析	1.
	6.7.	环境风险影响预测与评价	X 13
	6.8.	清洁生产分析	/ 231
	6.9.	施工期环境影响评价	. 234
7.	环境保	护措施及其可行性论证	. 239
	7 1	陈 层 除 沙 世	220
	/.l.	废气防宿措施及可行性论证	. 239
	7.2.	废水奶沿指施及可行性论证	. 264
	7.3.	架声防冶措施	. 284
	7.4.	回体发物的沿指施	. 285
	7.5.	土壤及地下水防冶措施	. 292
	7.6.	排污口规范化设直	. 295
	7.7.	外境风险防宿措施及巡急措施	. 296
	7.8.	新万朵物官拴指施	. 326
	7.9.	具他物质管控措施	. 327
	7.10.	外保投资及三同时	. 327
_	7.11.	施工期污染的冶措施	. 330
8.		施工期环境影响评价。 护措施及其可行性论证。 废气防治措施及可行性论证。 废水防治措施。 固体废物防治措施。 土壤及地下水防治措施。 排污口规范化设置。 环境风险防治措施。 ————————————————————————————————————	. 333
	0.1.	- YV YB B Z NU TU YU - T YV YB UU EL Z NU YV L L	. 333
	8.2.		
	8.3.	环境效益分析	
	8.4.	小结	. 334
9.	环境管	理与监测计划, (1) 1	. 335
	9.1.	环境保护第1	. 335
	9.2.	环境监狱,划	. 337
	9.3.	排污产可证制度	. 344
	9.4.	% 排查制度	. 344
	9.5.	杂染物排放清单和信息公开内容	. 345
	9.6-1	污染物总量控制	. 355
10,	XX 结论	仑与建议	. 356
***	$\chi_{0.1.}$	结论	. 356
Κı,	10.2.	建议与要求	. 358

附表:

附表 1 环境影响评价自查表

附表 2 审批基础信息表

1. 概述

1.1. 项目由来

近年来,化工园区都把发展基于产业集群或主导产业的研发平台,作为提高其特色主导产业竞争力的重要举措。作为全国最早的专业精细化工园区之一,泰兴经济开发区 27 年来专注发展精细化工及新材料产业、着力打造世界级精细化工及新材料产业基地。当前园区传统化工产业面临向高端精细化工及新材料产业转型发展的迫切现实需求,化工行业要实现高质量发展,就要把"创新转型、绿色发展、能级提升"作为未来发展的突出主题。

一直以来,以产学研合作为主的化工企业的研发创新困难重重,化工行业科技创新在中试放大环节"链条"断裂,创新成果得不到及时转化,企业创新动力下降。

2022年5月,江苏省化工产业安全环保整治提升领导小组办公室发布了《关于试点建设 江苏省化工中试基地的通知》(苏化治办〔2022〕30号),决定交流家港市、如东县和泰兴 市试点建设全省首批化工中试基地。

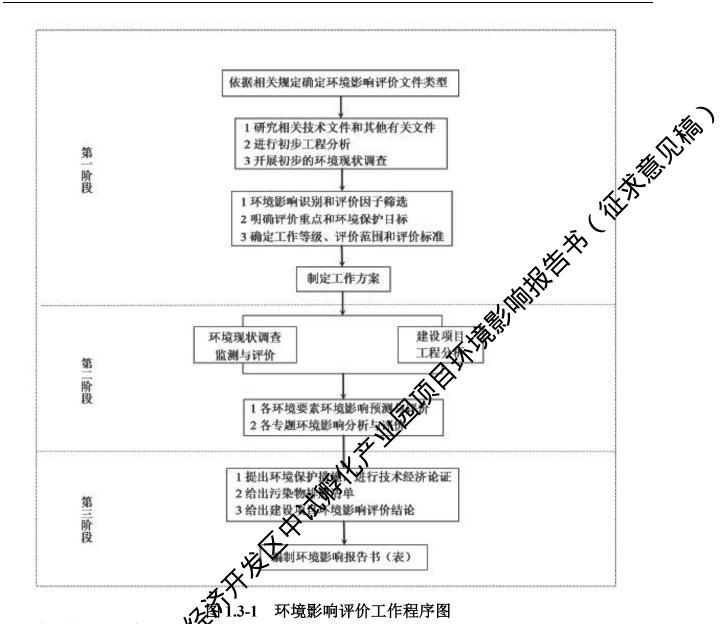
为促进制造业中试创新发展,打造"中国制造"品牌, 制造业高质量发展,工业和信息化部办公厅于 2024 年 4 月发布了《工业和信息化部办公厅关于做好 2024 年工业和信息化质量工作的通知》(工信厅科函〔2024〕113 号), 文文: "15.布局建设中试平台。摸查梳理中试平台建设模式、中试能力储备和公共服务需求 况,编制制造业中试平台建设实施指南,布局建设一批高水平中试平台。遴选一批具本交强行业带动力的重大中试项目,强化投资支持,促进产业创新技术迭代。培育一批优 文 试公共服务平台,推广先进典型经验。"

中试基地 入使用后,通过制定相关的入驻条件,在满足开发区产业定位及入驻条件的前提下,优先战略性新兴产业和"卡脖子"产品技术开展研究,可有效促进当地的技术和经济发展。

第1 的实施可为开发区现有企业或拟入驻企业提供统一的中试试验场地,以满足企业对实验室小试研发成功后、大规模量产前,为验证工艺的可行性、稳定性、安全性及产品市场性,探索解决工业化规模生产关键技术而进行的科学研究活动需求。

拟建项目已于 2025 年 6 月取得泰兴市数据局出具的《江苏省投资项目备案证》,备案证号:泰数据备〔2025〕2847 号。本次主要依托现有 8 栋中试楼并同步配套各类公辅设施及环保设施提供中试场地,根据设计,满负荷时可容纳 21 个中试项目的入驻。

经对照《建设项目环境影响评价分类管理名录》(2021 年版),本项目属于"二十三、化学原料和化学制品制造业"中"44. 基础化学原料制造 261; 合成材料制造 265、专用化学产品制造 266"中"全部(含研发中试;不含单纯物理分离、物理提纯、混合、分装的)"类别,因此需编制环境影响报告书。


根据《中华人民共和国环境保护法》《中华人民共和国环境影响评价法》和《建设项目环境保护管理条例》的有关规定,泰兴市襟江投资有限公司委托江苏润环环境科技有限公司承接"泰兴经济开发区中试孵化产业园项目"的环境影响评价工作。我单位接受委托后,对项目拟建地进行了现场踏勘,并根据收集的相关资料进行项目初筛,经现状监测、工程分类影响预测评价,并根据国家相关环保法规和标准编制了环境影响报告书。

1.2. 项目特点

- (1)本次利用现有的 8 栋中试楼,设置 5 类产业中试方向(①高流剂材料产业、②生物制造产业、③专用化学品产业、④电子化学品及半导体材料产业、分能性材料产业),满负荷时可同时入驻 21 个中试项目,实际运行中,孵化园会预留、的空位(约 7 个),用于安置国家或地方紧急或"卡脖子"中试项目以及解决中试项目设置未退时新项目的入驻安置问题;
- (2)本次将统一设置废气净化装置(RTO 焚煤、统)、污水处理站、危化品库、危废库等公辅、环保设施,为入驻企业提供"三废"的收集、处置,原辅料存储及调配服务;
- (3)鉴于后期入驻项目的不确定性,基本要求入驻企业在报批或论证的环评文件中应对废气、 废水处理措施的依托可行性进行充**发**证,如不具备依托条件,需单独对废气/废水收集处置;
- (4)中试基地内不设置罐区**4** 向时要求后期入驻中试项目不得设置原料罐区(物料中转罐除外):
- (5)中试基地拟通**水**次环评取得废气及废水总量指标,后期入驻项目所需总量在该指标内 平衡;同时,本次3不引进含第一类废水污染物中试项目;
- (6)中试算去向:根据计划,中试产物约80%交予客户或第三方用作检测,剩余20%作为危废管理,不得上市公开销售。
- 《大学本次以7个拟实际入驻中试项目进行污染源强及总量核算,后续其他项目入驻时按照相 《文件单独履行环保手续。

1.3. 环境影响评价工作程序

根据《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)等相关技术规范的要求, 本项目评价技术路线见图 1.3-1。

1.4. 关注的主要环境问题)

(1)结合,试基地特点,入驻企业存在较大的不确定性,导致了运营期间废气、废水产生情况变化资为较大;<u>故本次基于拟入驻的7个中试项目,开展基地配套的废气、废水集中处置措</u>施的合理性与可行性,并据此判定污染物能否稳定达标排放;

- (2)关注废气污染源强,评价污染物对区域环境的影响程度;
- (3)关注废水水量、水质与拟建污水站、园区工业污水处理厂的相容性;
- (4)关注固废的处置措施和暂存场所,尤其是危险废物的暂存和处置;
- (5)关注中试装置、危化品库区等泄漏、火灾、爆炸事故风险对周围环境的影响。

1.5. 初步分析判定

1.5.1. 政策相符性分析

1.5.1.1. 产业政策相符性分析

本项目定位为中试孵化产业园,属于中试基地,项目类别为"二十三、化学原料和化学制品制造业",行业类别为"工程和技术研究和试验发展(M7320)",对照《产业结构调整指导目录(2024年本)》,本项目属于鼓励类"三十一、科技服务业"中的"10、科技创新平台建设工作、中试基地……",符合国家产业政策要求。

对照《环境保护综合名录(2021年版)》,拟建项目所有产物均不属于高污染型。

对照《市场准入负面清单(2025 年版)》,拟建项目不属于清单中的"产准入类"和"许可准入类",满足清单要求。

经对照《自然资源要素支撑产业高质量发展指导目录(2024 (**)》,本项目不属于其中鼓励、限制或禁止用地项目。

经对照《江苏省"两高"项目管理目录(2024年版)》建项目产品不属于"两高"产品名录,因此不属于"两高"项目。

综上所述,本项目符合国家及地方产业政策

1.5.1.2. 选址及规划相符性分析

拟建项目位于泰兴经济开发区锦江路南侧、院士路西侧,依托现有 8 栋中试楼设置 5 类产业中试方向,满负荷时可入驻 21 个证式项目。

根据《中国精细化工(泰文》开发园区发展规划(2020~2030)环境影响报告书》及其审查意见(苏环审〔2023)之(方): 重点发展精细化工、化工新材料和医药化工三大产业。本项目用地为工业用地发展于中试基地,为园区精细化工、化工新材料和医药化工发展提供对应的前期中试服务。(各园区规划产业定位。

综上,大量自符合国家、地方产业政策及园区规划要求。

1.5.2. "怎线一单"相符性分析

1.50.1 与生态保护红线相符性

苏省国家级生态保护红线规划的通知》(苏政发〔2018〕74号)、《省政府关于印发江苏省国家级生态保护红线规划的通知》(苏政发〔2018〕74号)、《省政府关于印发江苏省生态空间管控区域规划的通知》(苏政发〔2020〕1号)、《江苏省自然资源厅<关于泰兴市2023年度生态空间管控区域调整方案>的复函》(苏自然资函〔2023〕432号)、《关于进一步加强生态保护红线监督管理的通知》(苏自然资源函〔2023〕880号)、《关于印发<泰州

市生态环境分区管控方案(2024年))>的通知》(泰环发〔2025〕23号)等文件,距离本项目最近的生态空间管控区域为如泰运河(泰兴市)清水通道维护区,最近距离约为4800m。本项目不在生态管控区域或生态保护红线范围内,项目所在地与生态红线位置关系见图1.5-1。

根据《自然资源部办公厅发文同意江苏省正式启用"三区三线"划定成果》(自然资办函〔2022〕2207号),"三区三线"指的是根据农业空间、生态空间、城镇空间三个区域,分别划定的永久基本农田保护红线、生态保护红线、城镇开发边界。本项目位于中国精细化工会、兴)开发园区(前身为江苏泰兴经济开发区)内,项目占地为工业用地,不涉及永久基本农田保护红线、生态保护红线等,故项目建设与自然资办函〔2022〕2207号相符。

项目与泰兴市"三区三线"划定方案位置关系图详见图 1.5-2。

1.5.2.2. 环境质量底线

地表水环境:根据《文》年度泰兴市生态环境状况公报》,2023年,全市水环境质量较2022年保持稳定,省域以上考核断面(8个断面)水质达标率和优III比例均为100%;市级以上考核断面(14个断面)水质达标率和优III比例均为85.7%。

由现状是为结果可知,评价范围内长江各监测断面水质因子均能达到《地表水环境质量标准》(\$\mathbf{3}\m

地下水环境:现状监测结果表明,除部分点位的硝酸盐、总大肠菌群、菌落总数外,其余监测指标均能达到或优于《地下水质量标准》(GB/T14848-2017)IV类标准,区域地下水水质良好。

声环境: 本项目厂界各监测点声环境质量满足《声环境质量标准》(GB3096-2008)中 3 类标准。

土壤环境:评价区内土壤能够满足《土壤环境质量 建设用地土壤污染风险管控标准》 (GB36600-2018)中表 1 第二类用地筛选值要求。

本项目建成后,废气经处理达标后高空排放,对大气环境影响可接受;项目产生的废水经预处理后排入工业污水处理厂集中处理,处理达《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准后,尾水排入长江,根据《泰兴经济开发区 5 万吨/日工业污水处理工程项目环境影响报告书》结论,本项目废水接管排放对周边水环境功能的影响可求。项目雨水排口安装在线监控,确保雨水达标排入市政雨水管网,不会对厂址周边水体产生影响;采取降噪措施后噪声达标;厂区分区防腐防渗,对地下水、土壤影响可接受;综区、拟建项目的实施不会突破现有的环境质量底线。

1.5.2.3. 资源利用上线

本项目位于现有工业用地上,项目采取的节能技术成熟、措施方面,有利于提高能源利用率;在设计上要求入驻企业选用的工艺和设备处于当前国内先边水平,基本符合国家、行业和地方相关节能法律法规、政策、标准等的规定要求。项户次需用能指标通过使用泰州市"十四五"时期新增用能指标来落实,不会影响泰州市完成"大力五"能耗强度控制目标。

中试孵化园内使用的新鲜水、电力、天然气、蒸汽等由开发区现有基础设施供给,可满足相应的用水、用电及天然气等需求,不超出、资源利用上线。

1.5.2.4. 环境准入负面清单

1、与《省政府关于印发江苏"三龙"单"生态环境分区管控方案的通知》(苏政发〔2020〕 49 号)相符性

根据分类管控原则,本地上所在地属于重点管控单元,主要推进产业布局优化、转型升级,不断提高资源利用效率,加强污染物排放控制和环境风险防控,解决突出生态环境问题。本项目建设可提高安全之一水平,并降低污水处理站处理压力,满足重点控制单元管控要求。

项目所在"长江流域属于江苏省区域(流域)生态环境分区中的长江流域,本项目不新增用地,提高安全生产水平,总量可在开发区内平衡,环境风险处于可控范围内,满足长江生态环境、区管控要求。

▶ 因此,本项目建设符合苏政发〔2020〕49 号要求。

2、与《泰州市生态环境分区管控实施方案》(泰环发〔2025〕23号)相符性

根据文件规定:全市共有环境管控单元 364 个,包括优先保护单元、重点管控单元和一般管控单元三类,实施分类管控。其中泰兴市内主要有优先保护单元 22 个、重点管控单元 37 个、一般管控单元 17 个。

本项目位于重点管控单元-泰兴经济开发区中国精细化工(泰兴)开发园区内,符合泰州市环境管控单元生态,境准入清单相关要求,详见表 1.5-1。

表 1.5.-1 与泰州市生态环境管控单元生态环境准入清单相符性分

가는 다니	表 1.31 一		Let & Art.
类别	要求	—————————————————————————————————————	相符性
	1、优先引入:	Alille,	
	重点发展以下符合氯碱、烯烃产业链上补链、延链、强链项目:	新正/ VI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	(1)化工产业:①以氢气、氯气、乙烯(环氧乙烷、氯乙烯、苯乙烯)、丙烯(环	A XIII	
	氧丙烷/丙烯酸)四大原料资源衍生发展精细化学品、专用化学品、特殊	\ \sqrt{\sqrt{\chi}}.	
	化学品、功能性化学品等;②化工新材料:高性能树脂、特种合成橡胶、高性	大 项目为中试基地,可为企业提供中试服务,	
	能纤维、功能性膜材料、电子化学品、含氟 ODS 替代品和含氟高分子材料等氟硅新	分 而有效推动三大产业的发展。	
	材料。	本项目属于国家《产业结构调整指导目录》	
	(2)高效新能源产业: 锂电池正极材料、锂电池电解液、锂电池电解液溶剂 滿	(2024年版)明确的鼓励类项目;7个入驻中试项	
	膜材料等电池化学品项目。	目不使用高 VOCs 含量的溶剂型涂料、油墨、胶黏	
	(3)医药和日化产业: 化学和生物制药、油脂化学品、表面活性剂、排剂脂肪胺	剂等;中试过程产生的有机废气经收集处理后达标	
	等项目。	排放。	
帝四七日	2、禁止引入:	拟建厂址位于长江干流岸线 1km 范围内,由	
空间布局	(1)禁止新建、扩建国家《产业结构调整指导目录》《江苏发产业结构调整限制、	于本项目行业类别为 (M7320) 工程和技术研究和	相符
约束	淘汰和禁止目录》明确的限制类、淘汰类、禁止类项目,注建法规和相关政策明令		
		岸线开发、区域活动、产业发展要求。	
	(2)禁止建设生产和使用高 VOCs 含量的溶剂型涂料、抽墨、胶粘剂等项目。	本项目建设符合《〈长江经济带发展负面清单	
	(3)禁止引入污染治理措施达不到《挥发性有根(X VOCS)污染防治技术政策》	指南(试行,2022年版)〉江苏省实施细则》规	
	和《江苏省重点行业挥发性有机物污染控制指南、等要求的项目。	定、符合《江苏省"三线一单"生态环境分区管控方	
	3、其他:	案》《江苏省国家级生态保护红线规划》《江苏省	
	(1)项目布局不得违反《<长江经济带发展负面清单指南(试行,2022年版)>	生态空间管控区域规划》管控要求,项目周边 500m	
	江苏省实施细则》规定的河段利用与岸边方发、区域活动、产业发展要求,以及《江	范围内无敏感点。	
	苏省"三线一单"生态环境分区管控方案》《江苏省国家级生态保护红线规划》《江	10,11,7,0 \$0.5,000	
	苏省生态空间管控区域规划》管控要求。		
	(2)化工区边界与居住区之 置不少于 500 米宽的隔离带,隔离带内不得规划		
	建设学校、医院、居民住宅、环境敏感目标。		
污染物排	1、总体要求: 人物	本项目为中试基地,入驻企业产生的废气经收	<u> ተ</u> ከ <i>የአ</i>
放管控	(1)排放污染物必须上到国家和地方规定的污染物排放标准。	集净化处理后达标排放;废水经预处理达接管标准	相符

(2)新、改、扩建项目应严格采取先进适用工艺技术和装备,新建化工企业达到 后组清洁生产一级水平,对有异味气体(氨、硫化氢等)排放的项目应达到国际先进水 放。平。

(3)化工园区应于 2030 年前达到碳排放峰值。

2、环境质量:

(1)大气环境质量达到《环境空气质量标准》(GB3095-2012)二级标准、《环 境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D 其他污染物空气质量浓度参考限值等。

(2)长江断面执行《地表水环境质量标准》(GB3838-2002)II类水标准,区域内如泰运河、古马干河执行III类水标准。

(3)土壤达到《土壤环境质量 建设用地土壤污染风险管控标准(试行)》 (GB36600-2018) 筛选值中的第二类用地标准。

3、排污总量:

园区污染物排放量严格落实限值限量管理要求,按照环境质量只能更好不的原则,根据上年度环境质量考核情况,动态确定园区污染物允许排放分量。

4、泰兴港区过船作业区完善并落实港口污染控制和船舶污染物接收转送、处置方案,加强全过程监管,确保各类污染物得到妥善处置。作业区初来水、

冲洗废水经预处理后优先回用,其余废水接管至后方污水处**没**集中处理,暂不具备接管条件的,应提出切实可行的污染治理措施满足环境。理要求;到港船舶生活污水、船舶油污水委托第三方接收清运。加强危化品产及罐区的挥发性有机物排放管控,强化油气回收和废气处理。严格控制船舶之气污染物排放,干散货装卸、堆存应进一步提升绿色化水平,优先采取全封闭之施。

1、健全环境风险防控体系,编制园区环境应等预案,完善环境预警与应急指挥平台,建设园区公共事故应急池,构建园区与7000环境风险联动机制,建立环境应急救援机构。

2、建设清下水闸控系统,完善厂区**从**河、长江三级环境风险防控体系,落实 环境风险防控措施。

3、对生产、使用、存储或释放风险物质的企业,开展突发环境事件风险评估 督促重点环境风险企业开展环境风险隐患排查整改,强化危险化学品运输管理。

- 4、制定在产企业土壤和增水污染隐患排查治理制度及监控预警方案。
- 5、加强对关闭搬迁**从**业业拆除活动的监管,对搬迁遗留场地开展污染调查 风险评估和风险管控。
 - 注评估和风险管控。**人人** 6、泰兴港区过程**从**业区加强港区环境风险管理,建设与港区环境风险相匹配的

|后纳入工业污水处理厂,再经**定**||处理后达标排||放。

项目所在地表水环境、土壤环境均满足相应标准要求;大气环境中臭氧石最大8小时滑动平均第90百分位数超标,投资《泰兴市"十四五"生态环境保护规划》,或为措施后,到2025年,环境空气质量优良天气、之率达到82%左右,全面消除重污染天气、

本**次分**新增污染物排放总量指标在园区储备 宪出**发**用平衡。

本项目建成后将编制突发环境事件应急预案, 配备应急物资和救援力量,并定期演练,最大限度 地防止和减轻事故的危害;与开发区应急体系联 动,实现环境风险联防联控,制定厂区三级防控方 案,能满足环境风险防控的相关要求。

相符

环境风险 防控

		ZL ^{US}	
	应急能力。严格限定港区运输和存储的货种,加强港区安全保障和环境风险防范力	() () () () () () () () () ()	
	度。落实港区环境风险应急能力建设要求,按要求编制环境风险防范和应急预案,	('\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	建立健全区域环境风险联防联控机制,有效防控区域环境风险。合理配备应急设备	, v	
	设施和物资,加强日常应急管理演练,及时应对可能出现的突发环境事件。强化饮	XX,	
	用水水源保护区风险防范应急预案,保障供水安全。		
	1、单位工业增加值水耗不高于9吨/万元。	本项目投 单位工业增加值水耗低于9吨/	
资源开发	2、单位工业增加值综合能耗指标值不高于 0.5 吨标煤/万元。	1 1 1 1	<u> </u> ተロ <i>ኮ</i> ታ
效率要求	3、泰兴港区过船作业区减少对自然岸线的占用,确保自然岸线保有率不低于国	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	相符
	家和地方规定的比例。	万元。	

3、与《关于中国精细化工(泰兴)开发园区发展规划(2020-2030)环境影响发音书》准入清单相符性

表 1.5-2 中国精细化工(泰兴)开发园区环境准入负面清单要求及负面清单

清单类型		准入内容	本项目概况
产业准入	优先引入	重点发展以下符合氯碱、烯烃产业链上补链、基键、强链项目: (1)化工产业: ①以氢气、氯气、乙烯(环氧化、氯乙烯、苯乙烯) 丙烯(环氧丙烷/丙烯酸)四大原料资源衍生发展精细化学品、专用化学品、特殊化学品、功能性化学品等; ②化工新材料: 高性能树脂、 按证合成橡胶、高性能纤维、功能性膜材料、电子化学品、含氟 ODS 替代品和含氟化、子材料等氟硅新材料。 (2)高效新能源产业: 锂电池正松材料、锂电池电解液、锂电池电解液溶剂、隔膜材料等电池化学品项目。 (3)医药和日化产业: 化学化物制药、油脂化学品、表面活性剂、特种脂肪胺等项目。	本项目为中试基地,可为企业提供中试服务平台,进而有效 推动开发区三大产业的发展,符合管理要求。
	禁	(1)禁止新建、扩建设家《产业结构调整指导目录》《江苏省产业结构调整限制、	(1)经对照《产业结构调整指导目录(2024年本)》,本项目

			<u>XL</u> YY
	止	淘汰和禁止目录》明确的限制类、淘汰类、禁止类项目, 法律法规和相关政策明令	属于鼓励类,符合国家产业政策的要求; 本项目不属于法律法规
	引	禁止的落后产能项目,以及明令淘汰的安全生产落后工艺及装备项目。	和相关政策明令禁止的落后产。项目及明令淘汰的安全生产落后
	入	(2)禁止建设生产和使用高 VOCs 含量的溶剂型涂料、油墨、胶粘剂等项目。	工艺及装备项目;
		(3)禁止引入污染治理措施达不到《挥发性有机物(VOCS)污染防治技术政策》和	(2)本项目为中试基础,入驻企业不涉及高 VOCs 含量的溶剂
		《江苏省重点行业挥发性有机物污染控制指南》等要求的项目。	型涂料、油墨、胶料、等辅料的使用;
		(4)禁止新建、扩建农药、医药和染料中间体化工项目(国家产业结构调整指导目	(3)本项目及 生企业污染治理措施符合《挥发性有机物
		录所列鼓励类及采用鼓励类技术的除外,作为企业自身下游化工产品的原料且不对外	(VOCs) 污染的治技术政策》和《江苏省重点行业挥发性有机物
		销售的除外)。	污染控制 》要求;
		(5)禁止新增光气生产装置和生产点。	(A) (A) 目不属于新建、扩建农药、医药和染料中间体化工项
		(6)禁止新建《危险化学品名录》所列剧毒化学品、《优先控制化学品名录》所列	
		化学品生产项目。	5)本项目及入驻企业不涉及光气生产装置及生产点;
		(7)禁止新改扩建高毒、高残留以及对环境影响大的农药原药项目(包括氧乐果人	(6)本项目为中试基地,对入驻企业严格要求,不涉及《危险
		水胺硫磷、甲基异柳磷、甲拌磷、特丁磷、杀扑磷、溴甲烷、灭多威、涕灭威、克	化学品名录》所列剧毒化学品、《优先控制化学品名录》所列化
		威、敌鼠钠、敌鼠酮、杀鼠灵、杀鼠醚、溴敌隆、溴鼠灵、肉毒素、杀虫双、灭	学品的生产研发;
		磷化铝,有机氯类、有机锡类杀虫剂,福美类杀菌剂,复硝酚钠(钾)、胺苯磺隆、	(7)本项目及入驻项目不属于新改扩建高毒、高残留以及对环
		甲磺隆、五氯酚(钠)等),新增农药原药(化学合成类)生产企业。	境影响大的农药原药项目;
		(8)禁止新增生产、储存和使用硝基类爆炸特性化学品项目。	(8)本项目及入驻项目不涉及硝基类爆炸特性化学品生产、储
		(9)禁止新建不符合行业准入条件的合成氨、对二甲苯、二硫化物、氟化氢、轮胎	存和使用;
		等项目。	因此,本项目不属于禁止引入产业。
		(1)项目布局不得违反《〈长江经济带发展负面清单指南人式行,2022年版)〉	本项目符合《〈长江经济带发展负面清单指南(试行,2022
	限	江苏省实施细则》规定的河段利用与岸线开发、区域活动工业发展要求,以及《江	年版) 〉江苏省实施细则》规定的河段利用与岸线开发、区域活
	制	苏省"三线一单"生态环境分区管控方案》《江苏省国家安生态保护红线规划》《江苏	中版
	引	省生态空间管控区域规划》管控要求。 - 4、	幼、) 並及展安水, 村 日 《江 沙 旬 三 线 一 年 王 恋 小 境 刀 区 盲 控 方 案 》 《江 苏 省 国 家 级 生 态 保 护 红 线 规 划 》 《江 苏 省 生 态 空 间 管
	入	(2)化工区边界与居住区之间设置不少于500米克的隔离带,隔离带内不得规划建	万采/ 《江苏省国家级王总体》红线风知/ 《江苏省王总王问旨
		设学校、医院、居民住宅等环境敏感目标。	工区域规划》;化工区边外隔离市内几种境效芯目标。
		(1)项目布局不得违反《〈长江经济带发发负面清单指南〉江苏省实施细则(试行)》	(1)本项目符合《〈长江经济带发展负面清单指南(试行,2022
		规定的河段利用与岸线开发及区域活动及求,以及《江苏省"三线一单"生态环境分区	年版)〉江苏省实施细则》规定的河段利用与岸线开发、区域活
空	· •	管控方案》《江苏省生态空间管控区域规划》《江苏省国家级生态保护红线规划》管	动、产业发展要求,符合《江苏省"三线一单"生态环境分区管控
布	′ · I	控要求。	方案》《江苏省国家级生态保护红线规划》《江苏省生态空间管
约	東	(2)沿江一公里范围:园区公文沿江一公里范围内的区域不得新建、扩建化工项目	控区域规划》;
		(涉及安全、环保、节能、)(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(2)拟建厂址位于长江干流岸线 1km 范围内,由于本项目行业
		励沿江一公里内的原有化工企业实行关闭、搬迁。保留企业要通过改进工艺、更新装	类别为(M7320)工程和技术究和试验发展,不属于化工生产项

		备、加大信息化智能化改造、强化污染治理等措施提高本质安全环保水平。沿江一公里范围内的区域可建设物流、仓储及基础设施,或者是符合园区产业定位的、生产环节可能涉及化工工艺的非化工类别的鼓励类、允许类生产项目。 (3)化工区边界与居住区之间设置不少于500米宽的隔离带,隔离带内不得规划建设学校、医院、居民住宅等环境敏感目标。	目,符合河段利用与岸线开发 达 域活动、产业发展要求;化工区边界隔离带内无环境敏感自 以 ,符合空间布局约束要求。		
一 污染物	总体要求	(1)排放污染物必须达到国家和地方规定的污染物排放标准。 (2)新、改、扩建项目应严格采取先进适用工艺技术和装备,新建化工企业达到清洁生产一级水平,对有异味气体(氨、硫化氢等)排放的项目应达到国际先进水平。 (3)化工园区应于 2030 年前达到碳排放峰值。 (4)严格执行《挥发性有机物无组织排放控制标准》(GB 37822-2019)特别排放限值。 (5)工业污水处理厂 COD、氨氮、总磷稳定达到《地表水环境质量标准》(3838-2002)中IV类标准,其余指标达到《化学工业水污染物排放标准》,B 32/939-2020)相应标准要求。	(1)本项目及文建企业废气、废水经处理后满足国家和地方规定的污染物样。标准: (2)本项是及入驻企业采用先进工艺技术和装备,本项目异味气体排放两足《恶臭污染物排放标准》(GB14554-93)标准要求; (4)本项目不属于"两高"项目; (4)本项目有机污染物排放优先执行行业排放标准,无行业排放标准时执行《大气污染物综合排放标准》(DB32/4041-2021)标准要求,同时满足《挥发性有机物无组织排放控制标准》(GB37822-2019)特别排放限值; (5)本项目废水经预处理后满足工业污水处理厂接管标准要求。		
排放管控	环境质量	(1)2025 年,PM _{2.5} 、臭氧、二氧化氮年均值分别达到 30、158、200克/立方米。 (2)长江断面执行《地表水环境质量标准》(GB 3838-2002)IFXX标准,区域内 如泰运河、天星港河执行III类水标准。 (3)建设用地土壤达到《土壤环境质量建设用地土壤污染400管控标准(试行)》 (GB36600-2018)筛选值中的第二类用地标准。	根据环境质量现状监测,评价长江段水质各污染物指标均符合《地表水环境质量标准》(GB3838-2002)II 类水质标准要求;评价范围内建设用地各监测点各项指标均能达到《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)中第二类用地筛选值等相关标准要求。		
	排污总量	污染物排放总量: (1)大气污染物总量控制 本次规划大气污染物总量控制因子为:颗粒物 50 766t/a、二氧化硫 1232.464t/a、氮氧化物 2314.292t/a、VOCs 1247.209t/a(其中有组织 749.352t/a)。 (2)水污染物总量控制 本次规划水污染物总量控制建议值分别,化学需氧量 369.195t/a、氨氮 18.46t/a、总磷 3.692t/a。	本项目建成后,新增污染物总量在规划总量控制范围内,总 量指标在开发区内平衡,总量平衡方案已落实。		
	境风 管控	(1)健全环境风险防控体系,如此区环境应急预案,完善环境预警与应急指挥平台,建设园区公共事故应急池、建园区与企业环境风险联动机制,建立环境应急救援机构。 (2)建设清下水闸控系统,完善厂区、内河、长江三级环境风险防控体系,落实环	园区加强了风险防范应急体系建设。对《中国精细化工(泰兴)开发园区突发环境事件应急预案》进行了修编,编制了园区公共管廊应急预案,增加应急监测点位,配备了应急物资和救援力量,并定期组织演练,最大限度地防止和减轻事故的危害。园		

410
2/4/2

境风险防控措施,

- (3)对生产、使用、存储或释放风险物质的企业,开展突发环境事件风险评估,督促重点环境风险企业开展环境风险隐患排查整改,强化危险化学品运输管理。
 - (4)制定在产企业土壤和地下水污染隐患排查治理制度及监控预警方案。
- (5)加强对关闭搬迁化工企业拆除活动的监管,对搬迁遗留场地开展污染调查、风险评估和风险管控。

区建立了企业一内河一长江三级环境风险防控体系,在园区建设有4个1万m³的事故应急池、连离本项目最近的为4#泵站及4#事故池)。园区雨洪排口闸控已全部完成施工,园区团结河、通江河、丰产河、段港河、区内河、洋思港等6条河道的6个闸站建设动力回流装置之一成建设。在南部拓展区增加地表水在线监控和污染源视频放还装置并接入园区现有环境监控与预警系统工程的端口。企业主大危险源及危险物质的动态管理信息库;进一步完善了发放以污染源、风险源、环境质量监控平台为基础的数字化、发化园区应急响应平台。本项目风险防范措施可行,能满足处业环境风险防控的相关要求。项目建成后将及时编制突发来发事件应急预案并进行备案。

资源开 发利用 要求

(1)单位工业增加值水耗不高于9吨/万元。

- (2)单位工业增加值综合能耗指标值不高于0.5吨标煤/万元。
- (3)区内企业禁止配套新建自备燃煤锅炉,推行天然气、电力及可再生能源等能源。

基地及后期入驻企业无燃煤锅炉,使用天然气、电力等清洁 能源。

4、与《长江经济带发展负面清单指南(试行,2022 年版)》、《七江经济带发展负面清单指南(试行,2022 年版)江苏省实施细则》(苏长江办发〔2022〕55 号)相符性

对照长江办〔2022〕7号、苏长江办发〔2022〕55号、海顶目不在其负面清单范围内,相符性分析详见下表。

表 1.5-3 与《长江经济带发展负面清单指南江苏省实施细则》相符性分析

	负面清单	相符性分析	相符性
一、河段 利用与	禁止建设不符合国家港口布局规划(江苏省沿江沿海港口布局规划(2015-2030年)》《江苏省内河港口布》划(2017-2035年)》以及我省有关港口总体规划的码头项目,禁止建设未仅以《长江干线过江通道布局规划》的过长江干线通道项目。	本项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,不属于过长江干线通道项目。	相符
岸线开 发	严格执行《中华人民共和民党然保护区条例》,禁止在自然保护区核心区、缓冲区的岸线和河段范围内投资建设旅游和生产经营项目。严格执行《风景名胜区条例》《江苏省风景名胜区传华条例》,禁止在国家级和省级风景名胜区核心景区的岸线和河段范围内投资建设与风景名胜资源保护无关的项目。	本项目位于中国精细化工(泰兴)开发园区,本项目不涉及自然保护核心区、缓冲区及风景名胜区。	相符

一次以及			
目。严格执行《中华人民共和国湿地保护法》《江苏省湿地保护条例》,禁止在国家湿地公园的岸线和河段范围内挖沙、采矿,以及任何不符合主体功能定位的投资建设项目。 禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线岸线保护和开发利用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众无防游洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施从外的项目。长江干支流基础设施项目应按照《长江岸线保护和开发利用总体规划》和生态环境保护、等要求,按规定开展项目前期论证并办理机总域。禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保保公内投资建设不利于水资源及自然生态保护的项目。 禁止未经许可在长江干支流及湖泊新设、改设或扩大分口。 禁止长江干流、长江口、34个列入《率先全面禁入化长江流域水生生物保护区及名规泊新设、改设或扩大排污口等止长江干支流一公里按照长江干支流岸线边界。实验人和部门河道管理范围边界)向陆域级深一公里按照长江干支流岸线边界。实验人利部门河道管理范围边界)向陆域级深一公里按照长江干支流岸线边界。实验人利部门河道管理范围边界)向陆域级深一公里投照长江干支流岸线边界。实验人利部门河道管理范围边界)向陆域级深一公里按照长江干支流岸线边界。实验人利部门河道管理范围边界)向陆域级深一公里技照长江干支流岸线边外,发验人对部门河道管理范围边界)向陆域级深一公里技照长江干支流岸线边界。实验人利部门河道管理范围边界)向陆域级深一个里域定域上,为中试验发展,为中试试验公共服务平台,不属于化工园区或化工项目。 禁止在距离长江干流岸线三公里使用内新建、改建、扩建尾矿库、治炼渣库和储石产库,以提升安全、生态环境扩水平为目的的改建除外。 禁止在无湖流域一、二、运像保护区内开展《江苏省太湖水污染防治条例》禁止在太湖流域一、二、三级保护区内。相符	关于加强饮用水源地保护的决定》《江苏省水污染防治条例》,禁止在饮用水水源一级保护区的岸线和河段范围内新建、改建、扩建与供水设施和保护水源无关的项目,以及网箱养殖、畜禽养殖、旅游等可能污染饮用水水体的投资建设项目;禁止在饮用水水源二级保护区的岸线和河段范围内新建、改建、扩建排放污染物的投资建设项目;禁止在饮用水水源准保护区的岸线和河段范围内新建、扩建对水体污染严重的投资建设项目,改建项目应当消减排污量。	本项目不涉及饮用水水源保护区。	相符
用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众科协的	质资源保护区的岸线和河段范围内新建围湖造田、围海造地或围填海等投资建设项目。严格执行《中华人民共和国湿地保护法》《江苏省湿地保护条例》,禁止在国家湿地公园的岸线和河段范围内挖沙、采矿,以及任何不符合主体功能定位的投资建设项目。	一个项目个涉及水产种质负源保护区及国家湿地公	相符
禁止长江干流、长江口、34个列入《率先全面禁食的长江流域水生生物保护区名录》的水生生物保护区以及省规定的其它禁渔者或开展生产性捕捞。 禁止在距离长江干支流岸线一公里范围内强度、扩建化工园区和化工项目。长江干支流一公里按照长江干支流岸线边界(对文外利部门河道管理范围边界)向陆域级深一公里执行。 本项目行业类别为(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,不属于化工园区域上不可目。长江干支流中线上工产流岸线边界(对文外利部门河道管理范围边界)向陆域级深一公里执行。 禁止在距离长江干流岸线三公里全围内新建、改建、扩建尾矿库、冶炼渣库和磷石膏库,以提升安全、生态环境等扩水平为目的的改建除外。 禁止在太湖流域一、二次发保护区内开展《江苏省太湖水污染防治条例》禁止的投资建设活动。 本项目不在太湖流域一、二、多发保护区内。相符	禁止违法利用、占用长江流域河湖岸线。禁止在《长江岸线岸线保护和开发的用总体规划》划定的岸线保护区和保留区内投资建设除事关公共安全及公众利力的防洪护岸、河道治理、供水、生态环境保护、航道整治、国家重要基础设施以外的项目。长江干支流基础设施项目应按照《长江岸线保护和开发利用总体设计》和生态环境保护、岸线保护等要求,按规定开展项目前期论证并办理相关等。禁止在《全国重要江河湖泊水功能区划》划定的河段及湖泊保护区、保贷等内投资建设不	本项目不在《长江岸线保护和开发利用总体规划》	相符
名录》的水生生物保护区以及省规定的其它禁渔术或开展生产性捕捞。 禁止在距离长江干支流岸线一公里范围内流域、扩建化工园区和化工项目。长 江干支流一公里按照长江干支流岸线边界(外域利部门河道管理范围边界)向陆域 纵深一公里执行。 禁止在距离长江干流岸线三公里。因内新建、改建、扩建尾矿库、冶炼渣库和 磷石膏库,以提升安全、生态环境。护水平为目的的改建除外。 禁止在太湖流域一、二、发保护区内开展《江苏省太湖水污染防治条例》禁 止的投资建设活动。 在何行 本项目行业类别为(M7320)工程和技术研究和 试验发展,为中试试验公共服务平台,不属于化工园 区或化工项目。 本项目为中试孵化园,行业分类为(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,不属于尾矿库项目。 禁止在太湖流域一、二、发保护区内开展《江苏省太湖水污染防治条例》禁	禁止未经许可在长江干支流及湖泊新设、改设或扩大株方口。		相符
工、区域 活动		不涉及	相符
活动 禁止在距离长江干流岸线三公里 发 围内新建、改建、扩建尾矿库、冶炼渣库和 磷石膏库,以提升安全、生态环境 以 护水平为目的的改建除外。	江干支流一公里按照长江干支流岸线边界 (東水利部门河道管理范围边界) 向陆域	试验发展,为中试试验公共服务平台,不属于化工园	相符
止的投资建设活动。 本项目不在太湖流域一、二、三级保护区内。 相符	禁止在距离长江干流岸线三公里。国内新建、改建、扩建尾矿库、冶炼渣库和磷石膏库,以提升安全、生态环境、护水平为目的的改建除外。	工程和技术研究和试验发展,为中试试验公共服务平	相符
禁止在沿江地区流走,扩建未纳入国家和省布局规划的燃煤发电项目。 本项目不属于燃煤发电项目。 相符		本项目不在太湖流域一、二、三级保护区内。	相符
7.00 - 1.	 禁止在沿江地区,扩建未纳入国家和省布局规划的燃煤发电项目。	本项目不属于燃煤发电项目。	相符

	禁止在合规园区外新建、扩建钢铁、石化、化工、焦化、建材、有色等高污染	本项目位于江苏泰兴经济无发区,园区已通过规	
	项目。合规园区名录按照《〈长江经济带发展负面清单指南(试行,2022年版) 〉	划环评,属于合规园区,本项 不属于化工高污染项	相符
	江苏省实施细则合规园区名录》执行。	目。	
	禁止在取消化工定位的园区(集中区)内新建化工项目。	本项目所在风风未被取消化工定位。	相符
	禁止在化工企业周边建设不符合安全距离规定的劳动密集型的非化工项目和其他人员密集的公共设施项目。	本项目与周边公文的距离符合安全距离要求,厂区布局符合消 产 公安求,已进行安全评价	相符
	禁止新建、扩建不符合国家和省产业政策的尿素、磷铵、电石、烧碱、聚氯乙烯、纯碱等行业新增产能项目。	本项目 不 美于建尿素、磷铵、电石、烧碱、聚氯乙烯、纯 % 目。	相符
	禁止新建、改建、扩建局毒、局残留以及对环境影响天的农药原约(化字合成类)项目,禁止新建、扩建不符合国家和省产业政策的农药、医药和染料中间体化工项目。	为项目不属于农药、医药和染料中间体化工项目。 (************************************	相符
	禁止新建、扩建不符合国家石化、现代煤化工等产业布局规划的项目,禁止新建独立焦化项目。	一本项目不属于国家石化、现代煤化工和独立焦化 项目。	相符
三、产业 发展	禁止新建、扩建不符合国家产能置换要求的严重过剩产能行业的项目。建立新建、扩建不符合要求的高耗能高排放项目。	本项目不属于严重过剩产能行业的项目。根据能 评结论,本项目不属于高耗能、高排放项目。	相符
	禁止新建、扩建国家《产业结构调整指导目录》《江苏省产业》为调整限制、淘汰和禁止目录》明确的限制类、淘汰类、禁止类项目,法律法规划相关政策明令禁止的落后产能项目,以及明令淘汰的安全生产落后工艺及装备项目。	本项目不属于国家《产业结构调整指导目录》《江 苏省产业结构调整限制、淘汰和禁止目录》明确的限 制类、淘汰类、禁止类项目,亦不属于法律法规和相 关政策明令禁止的落后产能项目和明令淘汰的安全生 产落后工艺及装备项目。	相符
	法律法规及相关政策文件有更加严格规定的从其规定。	法律法规及相关政策文件有更加严格规定的从其 规定。	相符

1.5.2.5. 小结

通过分析,拟建项目符合国家和地方产业政人工。 址符合区域总体规划及规划环评审查意见要求,满足"三线一单"要求。

1.5.3. 与相关法律法规、其他相关政策相符单分析 本项目与其他相关政策、法律法规等的相符性分析见表 1.5-4。

表 1.5-4 政策相符性分析

		农16: 次米相目上分析		
序号	-12-	政策要求	本项目情况	相符性
1	×X	《重点行业挥发性有机物综合治理方案》(环大气((2019)53号)	

		XLiv	
1.1	化工行业 VOCs 综合治理。加强制药、农药、涂料、油墨、胶粘剂、橡胶和塑料制品等行业 VOCs 治理力度。重点提高涉 VOCs 排放主要工序密闭化水平,加强无组织排放收集,加大 含 VOCs 物料储存和装卸治理力度。废水储存、曝气池及其之前废水处理设施应按要求加盖 封闭,实施废气收集与处理。密封点大于等于 2000 个的,要开展 LDAR 工作。	本项目为中试基地, 计对中试废气采取相应的净化措施处理	相符
1.2	加快生产设备密闭化改造。对进出料、物料输送、搅拌、固液分离、干燥、灌装等过程,采取密闭化措施,提升工艺装备水平。加快淘汰敞口式、明流式设施。重点区域含 VOCs 物料输送原则上采用重力流或泵送方式,逐步淘汰真空方式;有机液体进料鼓励采用底部、浸入管给料方式,淘汰喷溅式给料;固体物料投加逐步推进采用密闭式投料装置。	》 拟建中试基地将对入驻企业提出对中 设备、中试环节进行最大化密闭的要求。	相符
1.3	严格控制储存和装卸过程 VOCs 排放。鼓励采用压力罐、浮顶罐等替代固定顶罐。	拟建中试基地不设置罐区,且要求入驻 企业不得配置储罐(工艺中转罐除外),原 辅料均采用密闭包装桶/瓶等,并存放至危 化品库,由中试基地统一调度。	相符
1.4	实施废气分类收集处理。优先选用冷凝、吸附再生等回收技术;难以回收的,宜选用燃烧、吸附浓缩+燃烧等高效治理技术。水溶性、酸碱 VOCs 废气宜选用多级 吸收等处理技术。恶臭类废气还应进一步加强除臭处理。	拟建中试基地将按照"应收尽收、分质收集"的原则,对入驻企业产生的废气按照污染物种类、浓度进行分质处理。	相符
1.5	加强非正常工况废气排放控制。退料、吹扫、清洗等过程应加入含 VOCs 物料回收工作,产生的 VOCs 废气要加大收集处理力度。开车阶段产生的易存为性不合格产物应收集至中间储罐等装置。重点区域化工企业应制定开停车、检维修等非正常工况 Voca 治理操作规程。	拟建中试基地将对入驻企业提出该方 面的管理要求,从而加强中试过程中非正常 工况废气排放控制。	相符
2	《挥发性有机物文vOCs)污染防治技术政策》(环境保护部	3公告 2013 年第 31 号)	
2.1	对于含低浓度 VOCs 的废气,有回收价值时可采用吸附技术、吸收技术对有机溶剂回收后达标排放;不宜回收时,可采用吸附浓缩燃烧水术、生物技术、吸收技术、等离子体技术或紫外光高级氧化技术等净化后达标排放。 有机卤素成分 VOCs 的废气,宜采用非焚烧技术处理。	入驻的中试项目产生的 VOCs,部分自 行收集处置达标排放、部分经预处理后送基 地统一配置的 RTO 焚烧处理。	相符
2.2	恶臭气体污染源可采用生物技术、等离子体技术、吸附技术、吸收技术、紫外光高级氧化技术或组合技术等进行净化。净 后的恶臭气体除满足达标排放的要求外,还应采取高空排放等措施,避免产生扰民问题	基地污水处理站废气采用"一级次氯酸钠氧化+一级碱洗+一级水洗+活性炭吸附"技术进行净化后有组织排放。	相符
2.3	对于不能再生的过滤材料,吸附剂及催化剂等净化材料,应按照国家固体废物管理的相关规定处理处置。	整个基地运行过程中,废气治理产生的废活性炭判定为危险废物,委托有资质单位	相符
	A 1:		

	XL ^W	
	处置。	
2.4	虚业应建立健全 VOCs 治理设施的运行维护规程和台账等日常管理制度,并根据工艺要求定期对各类设备、电气、自控仪表等进行检修维护,确保设施的稳定运行。 基地投入运营后、要求入驻企业按照相关规定建立台际,开展泄漏检测、修复、质量控制、记录管理等工作,加强备用泵、在用泵、设计、开口管线等检测工作,强化质量关键。	相符
3	《2020 年挥发性有机物治理攻坚方案》(环大气〔202) 33 号)	
3.1	材料的企业纳入正面清单和政府绿色采购清单。 企业在无组织排放排查整治过程中,在企业应建立原辅材料台账,记录 VOCs 原辅材料名称、成分、采购量、使用量、库存量、 回收方式、回收量等信息,并保存机工明 材料。	相符
3.2	保证安全的前提下,加强含 VOCs 物料全方位、全链条、全环节密闭管理。储存 节应采用 密闭容器、包装袋,高效密封储罐,封闭式储库、料仓等。装卸、转移和输送 节应采用密 照《挥发性有机物无组织排放控制标准》	相符
3.3	本项目按照"应收尽收"的原则提升废气收集率。将无组织排放转变为有组织排放进行控制,优先采用密闭设备、在密闭空间中操作或采用全密闭集气罩收入方式;对于采用局部集气罩的,应根据废气排放特点合理选择收集点位,距集气罩开放最远处的 VOCs 无组织排放位置,控制风速不低于 0.3 米/秒。按照与生产设备"同启同类"的原则提升治理设施运行率。因安全等因素生产工艺设备不能停止或不能及时停止运动的,应设置废气应急处理设施或采取其他替代措施。按照"适宜高效"的原则提高治理设施之除率,不得稀释排放。企业新建治污设施或对现有治污设施实施改造,应依据排放发气特征、VOCs 组分及浓度、生产工况等,合理选择的,应该是对现有治污设施实施改造,应依据排放发气特征、VOCs 组分及浓度、生产工况等,合理选择的,可以是不能使用的。实验室废气,使不能使用的。实验室废气,使不能使用的。实验室废气,使是不能使用的。实验室废气,使是不能使用的。实验室废气,使是不能使用的。实验室废气,使是不能使用的。实验室废气,使是不能使用的。实验室废气,使是不能使用的。实验室废气,使用的。实验室废气,使用的。实验室废气,使用的,实验室废气,使用的,实验室、不是不能使用的。实验室废气,使用的,实验室、不是不能使用的。实验室、不是不能使用的。实验室、不是不能使用的。实验室、不是不能使用的。实验室、不是是一种的,实验室、不是是一种的,可以是不能使用的。实验室、不是是一种的,实验室、不是是一种的。实验室、不是是一种的,可以是不能使用的。实验室、不是是一种的,可以是不是一种的,可以可以是一种的,可以可以是一种的,可以可以是一种的,可以是一种的,可以可以是一种的,可以是一种的,可以可以是一种的,可以可以是一种的,可以可以可以是一种的,可以可以可以是一种的,可以可以是一种的,可以可以是一种的,可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以可以	相符
4	《省政府》(万关于江苏省化工园区(集中区)环境治理工程的实施意见》(苏政办发〔2019〕15 号文〕	
4.1	强化项目环评与规划环评、分子项目环境管理、区域环境质量联动的"三挂钩"机制。严格化 工项目准入门槛,禁止,为外入国家、省产业政策限制、淘汰类新建项目,不符合"三线一节"要求,不属于不予批准的情形,单"生态环境准入清英之"的项目,属于《建设项目环境保护管理条例》第十一条 5 种不予 运营后将与危废处置单位签订处置协议,确	相符

	批准的情形的项目,无法落实危险废物合理利用、处置途径的项目。	保危险废物得到合理 处置 。 项目所在园区上、成规划环评、拟建厂	
4.2	暂停审批未按规定完成规划环评或跟踪评价、园区内存在敏感目标或边界 500 米防护距离未拆迁到位的化工园区(集中区)内除民生、环境保护基础设施类以外的建设项目环评。	项目所在园区已完成规划环评,拟建厂址 500m 范围内无居民。	相符
4.3	严格限制在长江沿线新建扩建石油化工、煤化工等化工项目,禁止建设新增污染物排放的项目;严禁在长江干流及主要支流岸线 1km 范围内新建布局化工园区(集中区)和化工企业。鼓励距离长江干流和重要支流岸线 1km 范围内、具备条件的化工企业搬离 1km 范围以外,或者搬离、进入合规园区。	本项目 企类别为 (M7320) 工程和技术研究 发发展,不属于化工生产项目,符合	相符
4.4	或者搬离、进入合规园区。 接纳化工废水的集中式污水处理厂主要污染物 COD、NH3-N、TN、TP 排放浓度不得高于《城、镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标准; 化工废水污染物接管浓度、不得高于国家行业排放标准中的间接排放标准限值; 暂未公布国家行业标准或行业标准、定间接排放的,接管浓度不得高于《污水综合排放标准》(GB8978-1996)三级标准、位。	开发区工业污水处理厂尾水执行《城镇 污水处理厂污染物排放标准》 (GB18918-2002)一级 A 标准,接管标准 满足文件规定要求。	相符
4.5	硫酸、石油炼制、石油化学、合成树脂、无机化学、烧碱、聚氯乙烯等企业大气、物物按规定执行国家行业标准中的特别排放限值;其他行业对照《化学工业挥发性有机分类物排放标准》(DB32/3151-2016)、《恶臭污染物排放标准》(GB14554-93)、《大学染物综合排放标准》(GB16297-1996),执行最低浓度限值。	大气污染物执行对应的行业标准,如无行业标准则执行江苏省地方标准《大气污染物综合排放标准》(DB32/4041-2021)、《恶臭污染物排放标准》(GB14554-93)等。	相符
4.6	危险废物产生单位和经营单位要落实申报登记、转移联单、经营许可证、应急预案备案等制度,执行《国家危险废物名录》(原环保部、发展改革委、公安部、39号)、《危险废物贮存污染控制标准》(GB18597-2001)、《危险废物鉴别标准系列》(GB5085.7-2007)、《危险废物收集、贮存、运输技术规范》(HJ2025-2012)等、建立危险废物产生、出入库、转移、利用处置等台账,并在"江苏省危险废物动态管理系",如实申报,省内转移危险废物的,必须执行电子联单。	中试基地建设1间危废暂存库,统一对入驻企业产生的危险废物进行收集暂存,并由中试基地统一委托处置。危废产生后按照要求由中试基地进行申报、转移、处置等。	相符
4.7	化工废水全部做到"清污分流、雨污分流",采用"4.40一管,明管(专管)输送"收集方式,企业在分质预处理节点安装水量计量装置,建水满足容量的应急事故池,初期雨水、事故废水全部进入废水处理系统。	整个中试基地实施雨污分流,入驻企业 废水采用专管单独输送,厂区设置满足要求 的应急事故池,初期雨水进入废水处理系 统。	相符
5	《关于印发泰女中化工中试基地和中试项目管理办法(试行)的通知	印》(泰工信规〔2025〕1号)	
5.1	第二条 本办法所称化工中试是指化为 (化工)新产品、新工艺、新技术在实验室试验成功后、大规模量产前,为验证工艺的产行性、稳定性、安全性及产品市场性,探索解决工业化规模生产关键技术而进行的科	本次即为中试基地建设项目,入驻企业 拟实施的项目均为小试成功后、大规模量产 前对工艺开展相关的验证试验;同时本项目 已提供试验场所(8 栋中试楼)、供水/电/ 气/热等公用工程均已配套到位,并设置有 废气/废水/固废集中处理、暂存设施;本项	相符

本办法所称中试项目是指为开展化工中试而建设的工艺过程装置,包括必要的建(构) 筑物、工艺操作单元、水电气配套系统、自动控制和安全联键系统、环保治理等设施。 第三条 化工中试基地定位为中试试验公共服务平台、中试基地及入驻项目按照国民经济行 业分类工程和技术研究和试验发展。(M7320) 备条。相关部门、基地所在园区、基地运营单 企业增化过验过程中的协问题管,严密安全环保风险。 第四条 中试基地、中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、 要素合理利用的原则。中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、 要素合理利用的原则。中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、 要素合理利用的原则。中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、 要素合理利用的原则。中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、 发生,在企业股界方向,并被局人社企业对战的 作工产业发展方向,并被局人社企业对战的 作工产业发展方向,并被局人社企业对战的 作工产业发展方向,并被局人社企业对战的 作工产业发展方向,并被局人社企业对战的 作工产业发展方向,并被局人社企业对战的 推探设计、规建基地入建企业的成的作品 据设计、规建基地入社企业的成功的作品 据设计、规建基地入社企业的企业的 和符 发生规划。 第一条 中试基地应当由独立法人单位实施建筑。 第一条。一个设置中试项目的安全 第一条。一个设置中试项目的安全 第一条。一个设置中试项目的安全 第一条。一个设置中试项目的安全 第一条。一个设置中试项目的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的			XL Y	
5.2 业分类工程和技术研究和试验发展(M7320)各案。相关部门、基地所在园区、基地运营单			展中试而建设的完整的工艺过程装置,包括必要的建构筑物、工艺操作单元、水电气分配系统、自动控制和安全连锁系统、环保治	
第23条 中试基地、甲试项目建设应当建储技术无进、风险可整、符合产业政策和化工产业高、技术,应当符合产业政策和全省十四五"高端 展方向,鼓励支持战略性新兴产业和"卡脖子"产品技术的中试试验。	5.2	业分类-工程和技术研究和试验发展(M7320)备案。相关部门、基地所在园区、基地运营单	按照工程和技术研究和试验发 展 320)进行备案,后续入驻企业同步。	相符
5.4 第五条 中试基地须在省人民政府认定的化工园区内建设,符合化工园区、展规划。	5.3	第四条 中试基地、中试项目建设应当遵循技术先进、风险可控、符合产业发展需求、资本要素合理利用的原则。中试项目试验的产品、技术,应当符合产业政策和化工产业高量发展方向,鼓励支持战略性新兴产业和"卡脖子"产品技术的中试试验。	条件,优先确保中试项目的试验的产品、技术,应当符合产业政策和全省"十四五"高端化工产业发展方向;并鼓励入驻企业对战略	相符
5.5 第六条 中试基地内不得建设工业化生产项目和工业化生产装置。 5.6 第七条 新建、改建、扩建中试基地,按照固定资产投资,如的管理规定办理有关报建审批	5.4	第五条 中试基地须在省人民政府认定的化工园区内建设,符合化工园区发展规划。	属于省人民政府认定的化工园区,且符合园	相符
5.6 第七条 新建、改建、扩建中试基地,按照固定资产投资场内的管理规定办理有关报建审批 按照固定资产投资项目的管理规定办理有 关报建审批手续。 5.7 第八条 中试基地应当由独立法人单位实施建设 负责运行管理,并配备专业的安全、环保管理人员,统一协调管理中试项目的安全、环保管理人员。 第九条 中试基地内水电气供应、环保护 总型、应急处置等公共基础设施以及应急队伍建设、应急物资配备、应急预案管理及演统 并行合国家法律法规和标准要求,且满足中试项目需 家法律法规和标准要求,且能够满足基地内中试项目需要。 第十条 中试项目的项目单位 总为独立法人单位,负责项目的实施建设和运行管理。项目单位应当配备专业的安全、 发管理人员,项目单位负责人应当具有化工、安全等专业背景,相符,将对入驻的中试企业资质、主管人员等开展相关从业人员应当满足 对学历和专业技能的相应要求。 相符	5.5	第六条 中试基地内不得建设工业化生产项目和工业化生产装置	项目,不涉及工业化生产项目和工业化生产	相符
5.7 第八条 中试基地应当由独立法人单位实施建筑。负责运行管理,开配备专业的安全、环保 信期的运营管理,并配备安全生产、环境保 护管理人员。 第九条 中试基地内水电气供应、环保 理 应急处置等公共基础设施以及应急队伍建设、 应急物资配备、应急预案管理及演统 当符合国家法律法规和标准要求,且满足中试项目需 家法律法规和标准要求,且能够满足基地内 中试项目需要。 第十条 中试项目的项目单位 为独立法人单位,负责项目的实施建设和运行管理。项目 单位应当配备专业的安全、 资管理人员,项目单位负责人应当具有化工、安全等专业背景, 将对入驻的中试企业资质、主管人员等开展 相符 相关从业人员应当满足属的对学历和专业技能的相应要求。 严格审核,确保符合入驻要求。	5.6	1 XZI.	按照固定资产投资项目的管理规定办理有	相符
5.8 应急物资配备、应急预案管理及演练。	5.7	第八条 中试基地应当由独立法人单位实施建设、负责运行管理,并配备专业的安全、环保管理人员,统一协调管理中试项目的安全、工作。	后期的运营管理,并配备安全生产、环境保	相符
5.9 单位应当配备专业的安全、企业管理人员,项目单位负责人应当具有化工、安全等专业背景, 将对入驻的中试企业资质、主管人员等开展 相符 相关从业人员应当满足 国 家对学历和专业技能的相应要求。	5.8	应急物资配备、应急预案管理及演练 符合国家法律法规和标准要求,且满足中试项目需要。	家法律法规和标准要求,且能够满足基地内	相符
5.10 第十一条 化工重点 机点或者化工园区内的化工生产企业可以在内部建设中试项目,参照 本项目不涉及。 相符	5.9	单位应当配备专业的安全、产管理人员,项目单位负责人应当具有化工、安全等专业背景,相关从业人员应当满足国家对学历和专业技能的相应要求。	将对入驻的中试企业资质、主管人员等开展	相符
	5.10	第十一条 化工重点 流流点或者化工园区内的化工生产企业可以在内部建设中试项目,参照	本项目不涉及。	相符

		XLI	
	化工生产项目进行管理。对生产有影响的中试项目,原则上不得与在役生产装置在同一建 (构)筑物内。		
5.11	项目立项。项目单位持相关资料向所在园区提出申请,由园区牵头,县级市(区) 发改委、科技局、工信局、自规局、生态环境局、应急管理局、数据局、市场监管 局联合专家评审,形成会议纪要,附专家意见,向所在县级市(区)数据局办理备 案登记。	基地作为 全 理单位,将积极配合拟入驻企业开展 的 的前期准备工作,以尽快协助入驻企业,得备案登记。	相符
5.12	局联合专家评审,形成会议纪要,附专家意见,向所在县级市(区)数据局办理备案登记。 在中	本项目已依法依规编制完成了环境评价文件并报送泰州市生态环境局审证: ②本项目已在编制的环评文件中明确了建设内容、中试项目具体行业门类;同时根据工程分析,梳理出了行业基本污染物产生情况及需配套的公共污染治理设施,据此设计了废气、废水等集中处理装置; ③本项目已通过环评文件一次性申请了基地运行所需的所有排污指标,入驻中试项目可依次使用总量指标。	相符
5.13	应急管理。项目单位委托有资质机构编制中试项目安全证证报告和安全设施设计专篇,并组织专家进行评审论证,安全评价报告、安全证施设计专篇及评审论证结果报送所在县级市(区)应急管理局、园区管委会。	本项目已在环评文件中明确:入驻企业 需将通过专家论证的安全评价报告和安全 设施设计专篇作为前置条件。	相符
5.14	第十三条 中试项目开工建设前,建设单位应当完成项目立项、环境影响评价、安全评价等相关手续,并由有资质单位进行设计。	本项目已在环评文件中明确:入驻中试 项目在开建前,必须提供有效的项目立项、 环境影响评价、安全评价等相关手续。	相符
5.15	第十四条 中试项目应当在安全评价之前进步化工反应安全风险评估,反应工艺危险度不得高于3级,涉及硝化、氯化、氟化、重复化 过氧化工艺的中试项目应当进行全流程反应安全风险评估,并以反应安全风险评估。	本项目已在环评文件中对入驻中试项 目提出相关要求。	相符
5.16	第十五条 根据性质及用途,中 认 地内中试项目与其他装置、建筑之间应当符合《建筑设计防火规范》(GB50016-2014) 《精细化工企业工程设计防火标准》(GB51283-2020)等相关规范要求。	本项目已按照 GB50016-2014、 GB51283-2020 文件要求进行构筑物设计, 同时,要求入驻项目装置布设时严格执行该 规范要求。	相符
5.17	第十六条 中试基地大的户试项目投入运行前,项目单位应当组织专家对安全、环保等试验	本项目已在环评文件中明确:中试项目	相符

		XI.	
	条件进行审查,存在重大隐患、不具备试验条件的不得投入使用。	投入运行前,项目单位应当组织专家对安全、环保等试验条件之行审查,存在重大隐患、不具备试验条件的不得投入使用。	
5.18	第十七条 鼓励项目单位利用信息化、智能化技术改进传统工艺,降低中试项目的安全风险 和污染排放。	本项目之在环评文件中明确:鼓励入驻 的中试项目 位利用信息化、智能化技术改 进传统 2,降低中试项目的安全风险和污	相符
5.19	第十八条 投料试验前,项目单位应当编制试验方案,组织专家对试验方案进行论证;编定工艺技术规程、安全技术规程、岗位操作法、事故应急预案和突发环境事件应急预案 要负责人审核后实施。	染析。 本项目已在环评文件中提出要求:投料 试验前,入驻项目单位应当编制试验方案, 组织专家对试验方案进行论证;编制工艺技 术规程、安全技术规程、岗位操作法、事故 应急预案和突发环境事件应急预案,经主要 负责人审核后实施。	相符
5.20	第十九条 项目单位应当组织对参加化工中试的人员进行专项教育 为,经考核合格后方可上岗操作,涉及从事危险化工工艺过程操作及化工自动化控制仪 装、维修、维护的作业人员应当取得相应的特种作业操作证。参加化工中试的人员成为全面、准确掌握试验安全操作规程、试验过程中可能的危险有害因素、个体防护措施 另异常情况下的应急处置措施。	本项目已在环评文件中提出要求: 项目单位应当组织对参加化工中试的人员进行专项教育培训,经考核合格后方可上岗操作,涉及从事危险化工工艺过程操作及化工自动化控制仪表安装、维修、维护的作业人员应当取得相应的特种作业操作证。参加化工中试的人员应当全面、准确掌握试验安全操作规程、试验过程中可能的危险有害因素、个体防护措施以及异常情况下的应急处置措施。	相符
5.21	第二十条 项目单位在运行前应当根据项目特 配备满足需要的安全、环保应急设施、设备和物资,建立完善事故应急处置和救援保险机制,建立完善环境风险防控和应急管理制度,并组织应急演练。	本项目已在环评文件中提出要求,敦促入驻企业及时的完成突发环境事件应急预案的编制与备案工作,同时定期检查其演练情况。	相符
5.22	第二十一条 项目单位应当采取切实可行的工程控制和管理措施,确保消防水、泄漏物及初期雨水按规定收集处置,避免及放水进入外环境;项目单位对各类典型突发环境事件提出针对性的应急措施和处置方案	拟建基地将提供废水集中收集处理装置,但需入驻企业根据水质情况进行预处理,确保废水满足总污水站进水水质要求。	相符
5.23	第二十二条 项目单位成实格执行通过专家论证的试验方案。如有工艺、设备的改变,应当进行变更管理,可能是双发应工艺危险度提高或者环境影响增大的,应当重新组织专家论证。	本项目已在环评文件中提出要求:项目 单位应严格执行通过专家论证的试验方案。	相符

		XL V	
		如有工艺、设备的改变 位当进行变更管理,可能导致反应工艺危险度提高或者环境影响增大的,应当重新组织专家论证。 中试基地统一设置原辅料库为入驻企	
5.24	第二十三条 中试项目所用的原辅料按照相关法规、规范采购、存储。中试项目产出的产品 应标明"中试产品"和产品质量指标并定向销售。	中试基地统一设置原辅料库为入驻企业提供服务。同时要求入驻企业产出的产品应标识、试产品"和产品质量指标并定向销售、产禁随意买卖。	相符
5.25	第二十四条 中试试验结束后,项目单位应当在对试验情况进行全面分析的基础上,编写 结报告,总结报告应当有安全环保设施、设备运转、能源管理情况等内容。	本项目已在环评文件中提出要求:中试 试验结束后,项目单位应当在对试验情况进 行全面分析的基础上,编写总结报告,总结 报告应当有安全环保设施、设备运转、能源 管理情况等内容。	相符
5.26	第二十五条 单个中试项目自建成投入运行周期原则上不超过2年,特殊发况不可以向原核准、备案部门申请延续,延续时间不得超过1年。中试项目不得用于工业化生产。	本项目已在环评文件中明确:单个中试项目自建成投入运行周期原则上不超过2年,特殊情况下可以向原核准、备案部门申请延续,延续时间不得超过1年。中试项目不得用于工业化生产。	相符
5.27	第二十六条 中试项目运行期满、停止运行的,相关设施予以称除或者封存停用,并将有关情况报原核准、备案部门。利用原有设备、设施资源进行改造建设新的中试项目的,应当按照本办法规定重新办理相关手续。	本项目已在环评文件中明确:中试项目运行期满、停止运行的,相关设施予以拆除或者封存停用,并将有关情况报原核准、备案部门。利用原有设备、设施资源进行改造建设新的中试项目的,应当按照本办法规定重新办理相关手续。	相符
6	业企业验室废气污染控制技术规范》(DB32/T445	55-2023)	
6.1	废气收集: 应根据实验室单元易挥发物质的产产和使用情况,统筹设置废气收集装置,实验室门窗或通风口等排放口外废气无组织排放放整点浓度限值和监测应符合 GB37822 和 DB32/4041的要求。 根据易挥发物质的产生和使用情况、废气特征等因素,在条件允许的情况下,进行分质收集处理。同类废气宜集中放集处理。 有废气产生的实验设备和操作工位宜设置在排风柜中,进行实验操作时排风柜应正常开启,操作口平均面风流入互低于 0.4m/s。排风柜应符合JB/T6412 的要求,变风量排风柜应符	废气收集: 根据要求,过程分析室工作人员使用易 挥发物质进行实验室需在通风橱内完成,特 殊情况下则采用万向集气罩进行收集,集气 罩开口面风速大于 0.3m/s; 过程分析室配套的试剂柜均设有废气 收集管道,换气次数大约 6 次/h,收集管将 挥发的废气抽走处置。	相符

合 JG/T222 的要求,可在排风柜出口选配活性炭过滤器。

产生和使用易挥发物质的仪器或操作工位,以及其他产生废气的实验室设备,未在排风 柜中进行的,应在其上方安装废气收集排风罩,排风罩设置应符合 GB/T16758 的规定。距 排风罩开口面最远处废气无组织排放位置控制风速不应低于 0.3m/s, 控制风速的测量按照 GB/T16758、WS/T757 执行。

含易挥发物质的试剂库应设置废气收集装置,换气次数不应低于6次/h。

废气净化

6.2

实验室单位应根据废气特性选用适用的净化技术,常见的有吸附法、吸收法等。有机废 气可采用吸附法进行处理,采用吸附法时,宜采用原位再生等废吸附剂产生量较低的技术 无机废气可采用吸收法或吸附法进行处理:混合废气官采取组合式净化技术。根据技 鼓励采用更加高效的技术手段,并根据实际情况采取适当的预处理措施,符合 HJ200

净化装置采样口的设置应符合 HJ/T1、HJ/T397 和 GB/T16157 的要求。 HJ819 的要求,排放同类实验室废气的排气筒宜合并。

吸附法处理有机废气可采用活性炭、活性炭纤维等作为吸附介质,

- ①选用的颗粒活性炭碘值不应低于 800mg/g, 四氯化碳吸附率不应从于 窝活性炭碘值不应低于650mg/g,四氯化碳吸附率不应低于35%; 《 性能指标应符合 GB/T7701.1 的要求。选用的活性炭纤维比表面积不应低于 1100元 其他性能指标应符合 HG/T3922 的要求。其他吸附剂的选择应符合 HJ2026 的相关
- ②吸附法处理有机废气的工艺设计应符合 HJ2026 和 44-T386 的相关规定,废气在吸附 装置中应有足够的停留时间,应大于 0.3s。
- ③应根据废气排放特征,明确吸附剂更换周期 🗶 置超过 6 个月,有环境影响评价或者 排污许可证等法定文件的,可按其核定的更换周期执行,具有原位再生功能的吸附剂可根据 再生后吸附性能情况适当延长更换周期。

- ③应根据废气排放特征,明确吸附剂更换周期,对于污染物排放量较低的实验室单元, 原则上不官超过1年。

387的相关规定,并满足以下要求:

- ①采用酸性、碱性或黄疸氧化性吸收液时,宜配有自动加药系统和自动给排水系统;
- ②吸收净化装置容势气速不宜高于 2m/s,停留时间不宜低于 2s。

废气净化:

中试基地统一设置 1 套"碱液喷淋+气 水分离+活性炭吸附"装置对实验废气进行 收集处置, 尾气通过楼顶排气筒达标排放。

根据设计,拟选用的活性炭碘值大于 800mg/g, 比表面积为 1100~1300m²/g, 废 气在活性炭吸附箱内停留时间>0.3s。

喷淋塔内流速<2m/s,停留时间>2s。

相符

		XL iv	
6.3	二、收集和净化装置应在产生废气的实验前开启,实验结束后应保证实验废气处理完全再停机,并实现收集和净化装置与实验设施运行的联动控制。收集和净化装置运行过程中发生故障,应及时停用检修。 实验室单位应采用受影响人员易于获悉的方式及时公示吸附剂更换信息,包括更换日期、更换量、生产厂家、关键品质参数及相关人员等信息。 废气净化装置产生的废吸收液和吸附剂再生时产生的废气应进入范收集处理。 废气净化装置产生的废吸收液和吸附剂再生时产生的废气应进入范收集处理。 废气净化装置产生的危险废物,应按 GB18597 和 HJ2022 计危险废物贮存、转移、处置等相关要求进行环境管理。 实验室单位应将收集和净化装置的管理纳入日常管处中,对管理和技术人员进行培训,掌握必要的运行管理知识和应急情况下的处理措施 实验室单位应建立收集和净化装置的运行、并户和操作规程以及相关台账制度,明确设施的检查周期,相关台账主要记录内容包括: ①收集和净化装置的启动、停止时间;②数附剂和吸收液等更换时间;③净化装置运行工艺控制参数;④光度设备维护情况;⑤运行故障及维修情况。	运行管理 易挥发物质的管理 为驻企业所用原辅料均由中试基地统 为贵购买、管理及出入库管理,并做好相 应的为军台账; 外购的易挥发物质均采用 密闭容器 的是一个 是一个 是一个 是一个 是一个 是一个 是一个 是一个 是一个 是一个	相符
7	多院关于印发空气质量持续改善行动计划的通知》	(国发〔2023〕24号)	
7.1	坚决遏制高耗能、高排放、低水平项目盲目上马。新改扩建项目严格落实国家产业规划、产业政策、生态环境分区管控证案、规划环评、项目环评、节能审查、产能置换、重点污染物总量控制、污染物排放区域、碳排放达峰目标等相关要求,原则上采用清洁运输方式。涉及产能置换的项目,被置换产能及其配套设施关停后,新建项目方可投产。严禁新增钢铁产线、推行钢铁、焦化、烧结一体化布局,大幅减少独立焦化、烧结、球	本项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,属于产业政策鼓励类,不属于高耗能、高排放、低水平项目。	相符

		XLY V	
	团和热轧企业及工序,淘汰落后煤炭洗选产能;有序引导高炉—转炉长流程炼钢转型为电炉 短流程炼钢。到2025年,短流程炼钢产量占比达15%。京津冀及周边地区继续实施"以钢定 焦",炼焦产能与长流程炼钢产能比控制在0.4左右。	ZĀ (TĀ)	
7.2	加快退出重点行业落后产能。修订《产业结构调整指导目录》,研究将污染物或温室气体排放明显高出行业平均水平、能效和清洁生产水平低的工艺和装备纳入淘汰类和限制类名单。重点区域进一步提高落后产能能耗、环保、质量、安全、技术等要求,逐步退出限制类涉气行业工艺和装备;逐步淘汰步进式烧结机和球团竖炉以及半封闭式硅锰合金、镍铁、高碳铬铁、高碳锰铁电炉。引导重点区域钢铁、焦化、电解铝等产业有序调整优化。	本项 (M7320)工程和技术研究和试验 (基本)为中试试验公共服务平台,属于产 (M7320)工程和技术研究和试验 (基本),不属于钢铁、焦化、电 (基本)的产业项目。	相符
7.3	优化含 VOCs 原辅材料和产品结构。严格控制生产和使用高 VOCs 含量涂料、油墨、胶粘剂、清洗剂等建设项目,提高低(无)VOCs 含量产品比重。实施源头替代工程,加入收业涂装、包装印刷和电子行业低(无)VOCs 含量原辅材料替代力度。室外构筑物防护力城市道路交通标志推广使用低(无)VOCs 含量涂料。在生产、销售、进口、使用等价产格执行 VOCs 含量限值标准。	本项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,对后期入驻企业所需原辅料统一购买管理,并在不影响中试过程的前提下优选低 VOCs含量辅料。	相符
7.4	强化 VOCs 全流程、全环节综合治理。鼓励储罐使用低泄漏的呼吸阀 紧急泄压阀,定期开展密封性检测。汽车罐车推广使用密封式快速接头。污水处理场所减浓度有机废气要单独收集处理;含 VOCs 有机废水储罐、装置区集水井(池)有机废 密闭收集处理。重点区域石化、化工行业集中的城市和重点工业园区,2024 年年底前建立统一的泄漏检测与修复信息管理平台。企业开停工、检维修期间,及时收集处理退料 清洗、吹扫等作业产生的VOCs 废气。企业不得将火炬燃烧装置作为日常大气污染处理设施。	拟建中试基地不设置罐区,且要求入驻企业不得设置罐区(工艺中的周转罐除外);基地要求入驻企业针对物料中转罐采用低泄漏的呼吸阀、紧急泄压阀,定期开展密封性检测;基地污水站已考虑废气单独收集处置,达标后通过独立排气筒排放;含 VOCs有机废水储罐、装置区集水井(池)有机废气要密闭收集处理。	相符
7.5	推进重点行业污染深度治理。高质量推进钢铁、水泥、焦化等重点行业及燃煤锅炉超低排放改造。到 2025 年,全国 80%以上的钢铁产能方成超低排放改造任务;重点区域全部实现钢铁行业超低排放,基本完成燃煤锅炉超低水放改造。 确保工业企业全面稳定达标排放。推进发锅、石灰、矿棉、有色等行业深度治理。全面开展锅炉和工业炉窑简易低效污染治理。施排查,通过清洁能源替代、升级改造、整合退出等方式实施分类处置。推进燃气锅炉、煮燃烧改造。生物质锅炉采用专用锅炉,配套布袋等高效除尘设施,禁止掺烧煤炭、生活垃圾等其他物料。推进整合小型生物质锅炉,积极引导城市建成区内生物质锅炉(含金分)超低排放改造。强化治污设施运行维护,减少非正常工况排放。重点涉气企业逐步及加气和含 VOCs 废气旁路,因安全生产需要无法取消的,安装在线监控系统及备用处置货施。	拟建项目配套的 RTO 焚烧装置采用天然气进行助燃、低氮燃烧,且配置了废气预处理、尾气末端净化装置,可确保 NOx 达标排放。	相符
7.6	开展餐饮油烟、寒泉片味专项治理。严格居民楼附近餐饮服务单位布局管理。拟开设餐	拟建项目恶臭异味主要源自污水站及	相符

这产业友展指引、危险化字品"禁限控"目录,建立人四项目评估制度。 地,属于产业政策鼓励类项目。 第三十五条 化工园区内新建项目应当与主导产业相关 安全环保护器 公共基础设施 本项目为中试基地,为园区及拟入园企	
在线监控。对群众反映强烈的恶臭异味扰民问题加强排查整治,投诉集中的工业园区、重点	
企业要安装运行在线监测系统。各地要加强部门联动,因地制宜解决人民群众反映集中的油烟及恶臭异味扰民问题。 8 《省政府关于印发江苏省化工园区管理办法的通知》(苏政规(2028)6号) 第七条 禁止在下列地段、地区内新建、扩建化工园区: ①长江干支流岸线一公里范围内、京杭大运河(南水北调东线)和通榆河清水通道、冰河目行业类别为(M7320)工程和技新河、太浦河沿岸两侧一公里范围内、太湖流域一、二级保护区; ②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域; ③自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区域发展要求,符合相关管控要求。 8.2 第三十四条 化工园区应当依据产业发展规划,制定适应区域特点、地方实现化工园区产业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 第三十五条 化工园区内新建项目应当与主导产业相关 安全环保护器、公共基础设施	
8 《省政府关于印发江苏省化工园区管理办法的通知》(苏政规(2023)16号) 第七条 禁止在下列地段、地区内新建、扩建化工园区: ①长江干支流岸线一公里范围内、京杭大运河(南水北调东线)和通榆河清水通道、冰水质目行业类别为(M7320)工程和技新河、太浦河沿岸两侧一公里范围内、太湖流域一、二级保护区;②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域;③自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区域,发展要求,符合相关管控要求。 ④其他环境敏感区域。 8.2 第三十四条 化工园区应当依据产业发展规划,制定适应区域特点、地方实域化工园区产业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 第三十五条 化工园区内新建项目应当与主导产业相关 宏全环保护等、公共基础设施 本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。 本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。	
第七条 禁止在下列地段、地区内新建、扩建化工园区: ①长江干支流岸线一公里范围内、京杭大运河(南水北调东线)和通榆河清水通道、冰项目行业类别为(M7320)工程和技新河、太浦河沿岸两侧一公里范围内、太湖流域一、二级保护区;②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域;③自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区域,发展要求,符合相关管控要求。 8.2 第三十四条 化工园区应当依据产业发展规划,制定适应区域特点、地方实域化工园区产业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 第三十五条 化工园区内新建项目应当与主导产业相关。安全还保护等、公共基础设施 本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。 本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。	
8.1 ①长江干支流岸线一公里范围内、京杭大运河(南水北调东线)和通榆河清水通道、冰河、太浦河沿岸两侧一公里范围内、太湖流域一、二级保护区;②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域;③自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区域,发展要求,符合相关管控要求。④其他环境敏感区域。 8.2 第三十四条 化工园区应当依据产业发展规划,制定适应区域特点、地方实现。化工园区产业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 第三十五条 化工园区内新建项目应当与主导产业相关。安全环保书器、公共基础设施 本项目为中试基地,为园区及拟入园企本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。	
8.1 新河、太浦河沿岸两侧一公里范围内、太湖流域一、二级保护区; ②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域; ③自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区域发展要求,符合相关管控要求。 8.2 第三十四条 化工园区应当依据产业发展规划,制定适应区域特点、地方实现化工园区产业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 第三十五条 化工园区内新建项目应当与主导产业相关。安全还保护等、公共基础设施发展,不属于化工生产项目,有关,有关的股利用与岸线开发、区域活动、产业发展要求,符合相关管控要求。 本项目为中试基地,为园区及拟入园企业,属于产业政策鼓励类项目。 本项目为中试基地,为园区及拟入园企业,属于产业政策鼓励类项目。	
8.1 ②地震断层区、地质灾害易发区、蓄滞洪区、全年静风频率超过 60%的区域; 3自然保护区、饮用水水源保护区、永久基本农田、生态保护红线、生态空间管控区 发展要求,符合相关管控要求。 《其他环境敏感区域。 本项目为中试基地,为园区及拟入园企业发展指引、危险化学品"禁限控"目录,建立入园项目评估制度。 本项目为中试基地,为园区及拟入园企业或其他有需求的企业提供前期的中试场地,属于产业政策鼓励类项目。 本项目为中试基地,为园区及拟入园企业方面,是一个工具区内新建项目应当与主导产业相关,完全还保持的 公共基础设施 本项目为中试基地,为园区及拟入园企	
②地震断层区、地质灾害易友区、蓄滞洪区、全年静风频率超过 60%的区域; 有合河段利用与岸线开发、区域活动、产业	トケト
图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	付
图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图	
第三十五条。 化工园区内新建顶目应当与主导产业相关。 完全环保井路、少共基础设施 本项目为中试基地, 为园区及拟入园企	
第三十五条,化工园区内新建顶目应当与主导产业相关。安全环保井岭、火共基础设施 本项目为中试基地,为园区及拟入园企	
第三十五条,化工园区内新建顶目应当与主导产业相关。安全环保井岭、火共基础设施 本项目为中试基地,为园区及拟入园企	符
第三十五条,化工园区内新建顶目应当与主导产业相关。安全环保井岭、火共基础设施 本项目为中试基地,为园区及拟入园企	
8.3 类项目除外。	符
世,属于产业政策鼓励类项目。 	
本项目为中试基地,为园区及拟入园企	
8.4 第三十六条 高安全风险等级的化工园区,不得新建、改造、扩建危险化学品建设项目; 业或其他有需求的企业提供前期的中试场 相	符
	11
第三十七条 化工重点监测点可以在不新增供地 不增加主要污染物排放总量的情况下	
8.5 新建、改建、扩建化工项目;确需增加主要污染的、放总量的,由设区的市人民政府研究后 本项目为中试基地,不涉及化工重点监 相	符
	11
长江经济带合规园区外化工重点监测点还得新建、扩建高污染化工项目。	
第三十八条,省内搬迁入园项目、旅上《战略性新兴产业重点产品和服务指导目录》项	
目、列入国家《产业结构调整指导目》,"鼓励类和《鼓励外商投资产业目录》项目、列入国 本项目为中试基地,且属于产业政策鼓 内	
8.6 家和省里天技术装备以天文持项品汽里项目和以物理加上为王妛生产方式的新建项目,仕保 _{同 米 项目 首 机次 5 亿 元}	符
证女至环保投入满足需要的情况上可以不受最低投资额度限制。 具他精细化工生产项目在保	
证安全环保投入满足需要的意义下,最低投资额度由设区的市人民政府另行制定管理要求。	
9	
9.1 治理能力现代化,在序推进工业废水与生活污水分类收集、分质处理,完善含氟废水收 中试基地内已实施工业废水与生活污 相	

崇处理係亲建议。新建企业含氧度水不得该入城的污水处理」、已接管的企业开展全面排查 语信、到 2025 年、氯化物污染治理能力能够与地表水环境质量安浆相匹配。 密放污水处理」及重点增强企业用水污水排放以。部分重点图含考质面安装氧化物自动储控系统,并设置人工采样点,定期对接管水 探修、并与常、市生态环境大数据平台联网。逐步变行氯化物排放浓度和总量"效控",完善 排污许可核发现范。 超标间及、超标期面,建立数据归集、风险预整、信息推送、普办反馈工作机制,运用料 的方型需要继来。方法和手段。实现污染螺精细管理,确保氧化物超标问题能够立查立实 私的系统治理工作取得明显成效。 优化产业布局。统筹有序设立无伏、电子、全材料等涉减产业园等,到金级规则,从原生成。不同于涉氮产业园域 和自己等愈企业入园进区、对现有区外企业依法依规实施环保整治提升,保护实验,加自公营企业上的成分企业依法依规实施环保整理,是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不是不			XL ^Y	
9.2 涉無污水处理厂及重点涉無企业雨水污水排放口、部分重点固省考断面安装無化物自动监控系统,并与省、市生态环境大数据。 管理能力现代化。到 2025 年,全省氟化物非现场监管能力初步形成,围绕超标企业、超标园区、超标断而,建立数据归集、风险预警、信息推选、督办反馈工作机制,运用科学的污染测源思维、方法和手段。实现污染源精细管理,确保私物超标问题能够立查文量化物系统治理工作取得明显成效。 优化产业市局、绕筹有序设立光优、电子、驻材料等涉風产业园,引导涉解文、和贯导统企业入园进区、双现有区外企业依法依规实施不修整治提升,保险、破经济、和引导涉解企业入园进区、双现有区外企业依法依规实施不修整治提升,保险、破经济、中、中试过程中产生的含氟废水单和引导涉减企业及进区、双现有区外企业依法依规实施不修整治提升,保险、破经济、全水境协同高质量发展。 严格项目准入。强化项目环评与规划环评、现有项目环境管理、大量、发展、发展、发展、大量、中、进程、大量、对企业工产,上、发展、发展、发展、扩建项目应严格速令"增产不增污"原则。优先选择涉重重点,实验是重点的"生境"、相关。 一			1	
9.3 超标厨面、超标断面、建立数据归集、风险预等。信息推送、奢办反馈工作机制。运用科学的污染测源思维、方法和手段,实现污染源精细管理,确保氟化物超标问题能够立查文章。	9.2	涉氟污水处理厂及重点涉氟企业雨水污水排放口、部分重点国省考断面安装氟化物自动监控系统,并与省、市生态环境大数据平台联网。逐步实行氟化物排放浓度和总量"双控",完善		扣欠
9.4 园区集聚,打造江苏高科技氟化学工业园、苏州高新区光伏产业园等示范性园 积极推动 和引导涉氟企业入园进区,对现有区外企业依法依规实施环保整治提升,保险 或经济、生 独收集预处理达标后接管至工业污水处理 厂。	9.3	超标园区、超标断面,建立数据归集、风险预警、信息推送、督办反馈工作机制,运用科学的污染溯源思维、方法和手段,实现污染源精细管理,确保氟化物超标问题能够立查立改 氟化物系统治理工作取得明显成效。	为现,开设直入工术杆点,是别对接首水 为进行监测,以加强对氟化物的监测监控。	/ ከ1ህ
□ 接钩"机制,新建涉氣企业原则上不得设置入河入海排污口,应进。	9.4	园区集聚,打造江苏高科技氟化学工业园、苏州高新区光伏产业园等示范性园 积极推动和引导涉氟企业入园进区,对现有区外企业依法依规实施环保整治提升,保险 域经济、生态环境协同高质量发展。	规模化生产;中试过程中产生的含氟废水单	相符
清洁生产的重要内容,完善清洁生产标准体系,全函查行清洁生产审核,鼓励氢氟酸清洗原料替代及含氟废酸资源化利用等有利于氟化物削减和控制的工艺技术和防控措施。属地生态环境部门应综合考虑区域环境质量、涉氟重点企业发展规划及现状,提出涉氟重点企业强制性清洁生产审核名单并报省生态环境所核定处为级生态环境部门要加强监督检查,对不实施强制性清洁生产审核、在清洁生产审核。在清洁生产审核,是作假、不报告或者不如实报告清洁生产审核结果的企业,责令限期改正,对拒不改造的企业加大处罚力度。 完善基础设施。涉氟企业应做到,两污分流、清污分流",鼓励企业采用"一企一管,明管(专管)输送"的收集方式。如决推进含氟废水与生活污水分类收集、分质处理。新建企业含氟废水不得接入城镇污水建设施,现有企业已接管城镇污水集中收集处理设施的须组织排查评估,认定不能接入的限期退出,认定可以接入的须经预处理达标后方可接入。 相符	9.5	挂钩"机制,新建涉氟企业原则上不得设置入河入海排污口,应进入各产业定位的工业园区。存在国省考断面氟化物超标的区域,要针对性提出相应的氟化为区域削减措施,新、改、扩建项目应严格遵守"增产不增污"原则。优先选择涉氟重点区,开展氟化物排放总量控制试点工作。	独收集及预处理,预处理后再与其他废水统一经基地污水站处置后接管至工业污水处理厂;鉴于开发区不属于涉氟重点区域,暂	相符
9.7 管(专管)输送"的收集方式。如长推进含氟废水与生活污水分类收集、分质处理。新建企业。流",废水经基地污水站处理达标后,接管业。含氟废水不得接入城镇污水处理设施,现有企业已接管城镇污水集中收集处理设施的须组。	9.6	清洁生产的重要内容,完善清洁生产标准体系,全面发行清洁生产审核,鼓励氢氟酸清洗原料替代及含氟废酸资源化利用等有利于氟化物削减和控制的工艺技术和防控措施。属地生态环境部门应综合考虑区域环境质量、涉氟重点减少发展规划及现状,提出涉氟重点企业强制性清洁生产审核名单并报省生态环境厅核定之各级生态环境部门要加强监督检查,对不实施强制性清洁生产审核、在清洁生产审核发发虚作假、不报告或者不如实报告清洁生产审核结果的企业,责令限期改正,对拒不改变的企业加大处罚力度。	清洁生产审核要求,提出优先采用不含氟原	相符
9.8 强化排污许可。文学中报及核发要求,将氟化物纳入总量许可范围。结合排污许可管理 入驻企业将按照文件要求完成排污许 相符	9.7	管(专管)输送"的收集方式。这样推进含氟废水与生活污水分类收集、分质处理。新建企业含氟废水不得接入城镇污水处理设施,现有企业已接管城镇污水集中收集处理设施的须组织排查评估,认定不能按太的限期退出,认定可以接入的须经预处理达标后方可接入。	流",废水经基地污水站处理达标后,接管	相符
	9.8	强化排污许可。文章中报及核发要求,将氟化物纳入总量许可范围。结合排污许可管理	入驻企业将按照文件要求完成排污许	相符

		<u> </u>	
	有关要求,督促企业依法申领排污许可证或填写排污登记表,并在其中载明执行的污染控制	可的申报与核发,同风中试基地作为管理单	
-	标准要求及采取的污染控制措施。	位将对其进行核查。	
9.9	加强监测监控。结合工业园区限值限量管理,逐步实行氟化物排放浓度和总量"双控"。积极推进涉氟污水处理厂及涉氟企业雨水污水排放口、部分重点国省考断面安装氟化物自动监控系统,并与省、市生态环境大数据平台联网,实时监控。强化对重点时期、重点区域、重点断面的加密监测,一旦发现异常,及时调查处置。到 2023 年底,涉氟污水处理厂和部分重点国省考断面试点安装氟化物在线监控装置并联网;到 2024 年底,涉氟重点企业全面安装氟化物在线监控装置并联网。	拟建****基地在总排口安装在线监测系统及************************************	相符
9.10	建立水质"指纹库"。在重点区域、重点断面周边收集涉氟企业原料、产品、设备及污染源特征等相关资料,建立污染源排污精细化动态监管系统,为"企业雨污水排口-园区雨污水泵站-污水处理厂进出水-园区入河排口-水体重点断面"全流程监管提供新型高效抓手、观对区域污染源排污行为的动态监管,提高污染源排污精细化监管水平。到2025年成为涉氟重点园区试点完成水质"指纹库"的建设。	中试基地根据入驻项目需求,统一负责原辅料的购置与暂存,并做好原辅料(含涉氟原辅料)的出入库记录台账,为区域建立水质"指纹库"做好准备。	相符
9.11	推动"绿岛"建设。因地制宜,坚持"集约建设,共享治污"的思路,鼓励各地依据涉氟企业分布情况,针对电子、光伏、硅产业等涉氟中小微企业,建设含氟工业废水处理的"工业绿岛"项目,提升集中治污能力,降低废水治理成本,减轻企业负担。	中试基地统一对含氟废水进行单独收 集预处理,预处理后再与其他废水混合进入 污水站,出水达标后接管至开发区工业污水 处理厂。	相符
10	《中华人民共和国长江保护法》(2022年	= 12月)	
10.1	禁止在长江干支流岸线一公里范围内新建、大块化工园区和化工项目。	经对照《水利部办公厅关于印发长江干流及其一级支流二级支流目录的通知》(办河湖〔2025〕64号),距离本项目最近的长江支流为如泰运河(约5km),距离长江岸线小于1km,但由于本项目行业类别为(M7320)工程和技术研究和试验发展,不属于化工生产项目,故符合河段利用与岸线开发、区域活动、产业发展要求,符合相关的管控要求。	相符
10.2	禁止在长江干流岸线三公里范围内和重要支流岸线一公里范围内新建、改建、扩建尾矿库;但是以提升安全、生态环境保护水平为目的的改建除外。	本项目为中试基地,不属于尾矿库项 目。	相符
11	《关于大学〈泰州市生态环境安全与应急管理"强基提能"三年行动计划〉	》的通知(泰环办〔2023〕85号)	
11.1	推动环评和预案质量提升。洛实《建设项目环境风险评价技术导则》《江苏省环境影响评价文件环境应急相关内容编制要点》要求,重点建设项目环评必须做到环境风险识别、典型事	本次按照《建设项目环境风险评价技术 导则》《江苏省环境影响评价文件环境应急	相符
	/ N I		

		XL YS	
	故情形、风险防范措施、应急管理制度和竣工验收内容"五个明确"。	相关内容编制要点》及求编制环境风险和应急等相关内容,明确认环境风险识别、典型事故情形、风险防范措施、应急管理制度和竣工验收内容。	
11.2	推动环境应急基础设施建设。构筑企业"风险单元-管网应急池-厂界"的突发水污染事件"三道防线",设置环境风险单元初期雨水及事故水截流、导流措施,建设排水管网雨污分流系统和事故应急池等事故水收集设施,厂区雨水排口配备手自一体开关切换装置,上述点位均接入企业自动化监控系统。	本项的建立"风险单元-管网应急池- 厂界"的发发水污染事件"三道防线",厂区 设施,商水及事故水截流、导流措施,建设 管网雨污分流系统和事故应急池等事 战水收集设施,厂区雨水排口设置在线监控 系统。	相符
11.3	强化常态化隐患排查治理。环境风险企业建立常态化隐患排查制度。较大以上等级风险企业每半年至少开展一次全面综合排查;每月至少开展一次环境风险单元巡视排查,双大隐患清单限期整改闭环;每半年至少开展一次专项培训,提升主动发现和解决环境隐患不透的意愿和能力。	企业拟建立常态化隐患排查制度。定期 开展环境风险单元巡视排查,列出隐患清单 限期整改闭环;积极开展专项培训,提升主 动发现和解决环境隐患问题的意愿和能力。	相符
12	《关于深入开展涉 VOCs 治理重点工作《查的通知》(苏·J	· 环办(2022)218 号)	
12.1	设计风量 涉 VOCs 排放工序应在密闭空间中操作或采用全密闭集气罩收入无法密闭采用局部集气罩的,应根据废气排放特点合理选择收集点位,按《排风罩放入类和技术条件》(GB/T 16758)规定,设置能有效收集废气的集气罩,距集气罩开口放最远处的 VOCs 无组织排放位置,控制风速不低于 0.3 米/秒。	中试过程中涉及 VOCs 排放工序采用 密闭管道收集; 过程分析室则是利用通风橱 或万向集气罩进行收集,集气罩风速大于 0.3m/s; 基地统一配置的活性炭吸附装置已按 照空间大小、换气次数等参数进行设计; 入驻企业则在获批的环评报告中对其风机设计风量合理性进行分析。	相符
12.2	设备质量 排放风机宜安装在吸附装置后端,使装置形成负压,尽量保证无污染气体泄漏到设备箱罐体外。 应在活性炭吸附装置进气和出气管道上设置采样口,采样口设置应符合《环境保护产品技术要求工业废气吸附净化装置 H3 T386 2007》的要求,便于日常监测活性炭吸附效率。根据活性炭更换周期及时更换活、炭、更换下来的活性炭按危险废物处理。采用活性炭吸附装置的企业应配备 VOCs 快速发现设备。	根据设计,排放风机均设置于吸附装置后端,且中试基地要求入驻企业落实该方案; 基地及入驻企业配置的活性炭吸附装置将按要求设置进气/出气管采样口,采样口的设计依据 HJT386-2007 进行; 活性炭装置产生的废活性炭全部纳入危险废物管理,委托有资质单位进行处置; 同时基地统一配置 VOCs 快速监测设备,为	相符

		<u> </u>	
		入驻企业提供服务。	
12.3	气体流速 吸附装置吸附层的气体流速应根据吸附剂的形态确定。采用颗粒活性炭时,气体流速宜低于 0.60m/s,装填厚度不得低于 0.4m。活性炭应装填齐整,避免气流短路;采用活性炭纤维时,气体流速宜低于 0.15m/s;采用蜂窝活性炭时,气体流速宜低于 1.20m/s。	本次选用颗粒活性炭,设计气体流速 0.3~0.6m/s,装填厚度≥0.4m;基于入驻企业 的不确定性、中试基地要求入驻企业严格落 实活性发光体流速及填装厚度等要求。	相符
12.4	废气预处理 进入吸附设备的废气颗粒物含量和温度应分别低于 1mg/m³ 和 40°C, 若颗粒物含量超过 1mg/m³ 时, 应先采用过滤或洗涤等方式进行预处理。 活性炭对酸性废气吸附效果较差,且酸性气体易对设备本体造成腐蚀,应先采用洗涤进行预处理。 企业应制订定期更换过滤材料的设备运行维护规程,保障活性炭在低颗粒物、低温率条件下使用。	实活性表 流速及填装厚度等要求。 本项目对含尘有机废气采取旋风、布袋 成组合工艺进行预处理,确保 RTO 进气颗 粒物浓度低于 5mg/m³。	相符
12.5	活性炭质量 颗粒活性炭碘吸附值≥800mg/g,比表面积≥850m²/g;蜂窝活性炭横向抗压度应不低于 0.9MPa,纵向强度应不低于 0.4MPa,碘吸附值≥650mg/g,比表面积≥750㎡²/g。工业有机 企业应备好所购活性炭厂家关于活性炭碘值、比表面积等相关证明之料。	本项目拟采用颗粒活性炭,碘值 ≥1300mg/g,比表面积≥1100m²/g;基地及入 驻企业均将活性炭厂家关于活性炭碘值、比 表面积等相关证明材料留存备查。	相符
12.6	活性炭填充量 采用一次性颗粒状活性炭处理 VOCs 废气,年活性炭使用量 近低于 VOCs 产生量的 5 倍,即 1 吨 VOCs 产生量,需 5 吨活性炭用于吸附。活性炭更类周期一般不应超过累计运行 500 小时或 3 个月,更换周期计算按《省生态环境厅关于特计污单位活性炭使用更换纳入排污许可管理的通知》有关要求执行。	本项目活性炭填充比例≥VOCs产生量,且更换周期按照3个月进行。	相符
13	《江苏省重点行业工业企业和水排放环境管理办法(试行)》(苏	污防攻坚指办〔2023〕71 号)	
13.1	第三条 工业企业应结合环境风险评估,制定的水管理制度,规范雨水排放行为,绘制管网分布图,标明雨水管网、附属设施(收集化、检查井、提升泵等),以及排放口位置和水流流向,并标明厂区污染区域。本办法的标污染区域,是指企业日常生产,物料和产品装卸、存储及主要转运通道,污染治理关键程中易产生污染物遗撒或径流污染的区域。	投运后,中试基地将组建专门的环境管理部分,由专人负责对雨污水系统进行统一管理,并制定相应的管理制度;本次已绘制厂区雨水管网布设图(含管网及附属设施),图示了雨水走向等(图 7.2-1)。	相符
13.2	第四条 工业企业应根据厂区收货、平面布置、污染区域及环境管理要求等开展雨水分区收集,建设独立雨水收集系统。实现雨水收集系统全覆盖。实施雨污分流、清污分流,严禁将生产废水和生活污水技术,水收集系统,或出现溢流、渗漏进入雨水收集管网的现象。	拟建项目已按照雨污分流、清污分流要求,结合厂区地形高低、平面布设,建立了独立的雨水收集系统。	相符
13.3	第五条 工业企业污 及 区域的初期雨水收集管网及附属设施宜采用明沟或暗涵(盖板镂空)收集输送,并根据无染状况做好防渗、防腐措施,设计建设应符合《室外排水设计标准》	本次配置的初期雨水收集管网及附属 设施采用的明沟收集输送,并对沟渠进行了	相符

		XL iv	
	等相关规范和标准要求。	防腐防渗处理,相关及17年格按照《室外排水设计标准》等相关。范和标准进行。	
13.4	第六条 工业企业雨水收集管道及附属设施内原则上不得敷设存在环境风险的管线。	根据设计,本项目雨水收集管道及附属设施内不存在外境风险管线。	相符
13.5	第七条 工业企业初期雨水收集设施是雨水收集系统的重要组成部分。初期雨水是指污染区域降雨初期产生的径流雨水。一般取一次降雨初期 15-30 分钟的雨水,具体根据降雨强度及下垫面污染状况确定。	本次数 一次降雨初期 15 分钟的雨水 进行	相符
13.6	第八条 初期雨水收集系统收集区域覆盖污染区域,包括导流沟、初期雨水截留装置 初期雨水收集池等。	本项目拟建初期雨水池池容为 200m³,且在池体前端设置切换阀门(自动 +手动),收集降雨初期15分钟的雨水,15 分钟后切换阀门,将雨水排至雨水排放口。	相符
13.7	第九条 初期雨水收集池容积,需满足一次降雨初期雨水的收集。一般情况下,他内容积可按照污染区域面积与一次降雨初期 15-30 分钟的降雨深度的乘积设计,其中都和深度一般按 10-30 毫米设定。	本次按照一次降雨初期 15 分钟的雨水 进行了初期雨水收集池的核算,池容 1200m ³ 。	相符
13.8	第十条 雨水收集池同时兼顾事故应急池的作用时,池内容积应同时,备事故状况下的收集功能,满足事故应急预案中的相关要求。事故应急池内应增加深水中,实时监控池内液位,初期雨水收集进入应急池后能迅速通过提升泵转至污水处理系统,确保应急池保持常空状态;同时应设置手动阀作为备用,确保在突发暴雨同时发生不改等极端情况下,即使断电也能采取手动方式实现应急池阀门和雨排阀的有效切换。	本项目拟建初期雨水池池容为1200m³,且在池体前端设置分流井,配套切换阀门(自动+手动),收集降雨初期15分钟的雨水,15分钟后切换阀门,将雨水排至雨水排放口。初期雨水池拟做防腐防渗处理,突发事件发生时,可兼做事故应急池。	相符
13.9	第十一条 初期雨水收集池前设置分流井、收集池内设置流量计或液位计,可将收集池的液位标高与切换阀门开启连锁,通过设定的液位控制阀门开启或关闭,实现初期污染雨水与后期洁净雨水自然分流。因现场局限无法处置初期雨水收集池的污染区域,应设置雨水截留装置,安装固定泵和流量计,直接将发期雨水全部收集至污水处理系统。	本项目拟建初期雨水池池容为1200m³,且在池体前端设置分流井,配套切换阀门(自动+手动),收集降雨初期15分钟的雨水;收集池内设置流量计或液位计,收集池的液位标高与切换阀门开启连锁,通过设定的液位控制阀门开启或关闭,实现初期污染雨水与后期洁净雨水自然分流。	相符
13.10	第十二条 初期雨水应及 以 在全厂区污水处理站处理,原则上 5 日内须全部处理到位; 未配套污水处理站的,应及 以 输送至集中污水处理设施处理,严禁直接外排。	本项目初期雨水导排至污水站进行集 中处理,达标后接管污水处理厂。	相符
13.11	第十三条 无降雨时分别期雨水收集池应尽量保持清空。	无降雨时,初期雨水收集池保持清空。	相符
13.12	第十四条 初期或水收集到位后,应做好后期雨水的收集、监控和排放。	本次拟在雨水排放口设置在线监测系	相符

		统,用于降雨期间雨水水质监控。	
	第十五条 后期雨水可直接排放或纳管市政雨水管网。雨水排放口水质应保持稳定、清。严禁将后期雨水排入污水收集处理设施,借道污水排口排放的,不得在污水排放监控点前汇入,避免影响污水处理设施效能或产生稀释排污的嫌疑。	本项目实施而污污流,初期雨水收集后 送污水站处理。后期雨水则直接通过雨水排口排入市政原水管网,不存在混排问题。	相符
13.14 雨刀	第十六条 工业企业原则上一个厂区只允许设置一个雨水排放口。确需设置两个及以上水排放口的,应书面告知生态环境部门。	本本 水排口数量核定为1个。	相符
13.15 1.5 砖。	第十七条 工业企业雨水排放口前须设置明渠或取样监测观察井。明渠长度一般不小于 3 米,检查井长宽不小于 0.5 米,检查井底部要低于管渠底部 0.3 米以上,内侧贴白色瓷。	》。 本次在雨水排放口前设置取样监测观 为井,内部按照要求进行建设。	相符
12 16	第十八条 工业企业雨水排放口应设立标志牌,标志牌安放位置醒目,保持清洁, 读 损、破坏。	本项目拟在雨水排口处按照规范要求 设置标志牌。	相符
13.17 排》	第十九条 工业企业雨水排放口应按相关规定和管理要求安装视频监控设备或水质在线控设备,并与生态环境部门联网。水质在线监控因子由生态环境部门根据环境、响评价、污许可管理、接管集中式污水处理厂去除能力,以及下游水功能区、国省为外面、饮用水地等敏感目标管理要求等确定。	本次拟在雨水排放口设置在线监测系统,并与生态环境部门联网,用于降雨期间雨水水质监控。	相符
高,	第二十条 为有效防范后期雨水异常排放,必要时在雨水排放口前必安装自动紧急切断置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如此 因子浓度出现明显升,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预,立即停止排水并排查超标原因,达到相关要求后方可恢复水水。	本次在雨水排放口前应安装自动紧急 切断装置,并与水质在线监控设备连锁,以 应对雨水水质明显升高或超标等突发环境 事件的发生。	相符
13.19 水,	第二十一条 无降雨时,工业企业雨水排放口原外上应保持干燥,降雨后应及时排出积,降雨停止 1 至 3 日后一般不应再出现对外域	投运后,针对雨水排口,中试基地将严格执行相关要求,做到:无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后不出现对外排水。	相符
13.20 明雨	第二十二条 工业企业雨水排口应纳入,并及排污许可管理。企业应在排污许可证上载雨水排放口数量和位置、排放(回用,方式、监测计划等信息。	中试基地在申请排污许可证时,将雨水 排口信息进行填报。	相符
	第二十三条 工业企业应定期不要雨水收集系统日常检查与维护,及时清理淤泥和杂物,保设施无堵塞、无渗漏、无处量,确保不发生污水与雨水管网错接、混接、乱接等现象,禁将生活垃圾、固体废弃。高浓度废液等暂存、蓄积或倾倒在雨水沟渠。	中试基地将制定雨水收集系统管理制度,定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接等现象。	相符
13.22	第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和联网管理,记	中试基地将制定雨水系统管理制度,对	相符

		XL'i	
	录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查和非现场执法监管。	设置的水质在线监控设备加强运维和管理, 记录并妥善保存雨水盈测、设施运营等台账 资料,以便接受相关管理部门监督检查和非	
13.23	第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开管理内容,主动接受社会公众监督。	现场执法监管。 基地之间雨水排水管网图,纳入企业环境信息。 第1.	相符
13.24		督 中试基地已制定雨水排放口管理制度 和操作规程,并张贴上墙;定期开展日常操 作演练,避免人为误操作等引发环境污染事 故。	相符
13.25	第二十七条 雨水排放口无雨时排水,或降雨时排水出现污染物浓度异常,甚至的过《污水综合排放标准》或行业水污染物排放标准,经检查核实,企业应依法承担超大的污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污等方式逃避监管相应的关键责任。	中试基地将作为责任主体,对雨水排口出现的环境问题负责。	相符
13.26	第二十八条 企业发生水污染事故,未及时启动应急预案或采取规定的防范措施,造成 污染物从雨水排放口排放的,应承担涉嫌过失或故意行为相应的 关 符责任。	中试基地将编制突发环境事件应急预案,并定期开展演练,以防止废水污染物从雨水排放口排放;如涉及事故废水通过雨水排口排出厂区范围,同时,中试基地将作为相应的法律责任主体。	相符
14	《生态环境分长管控管理暂行规定》(环环评〔2	024) 41 号)	
14.1	涉及区域开发建设活动、产业布局优化调整、资源发源开发利用等政策制定时,充分考虑生态环境分区管控要求,引导传统制造业绿色低碳大型升级及战略性新兴产业合理布局,严格控制高耗能、高排放、低水平项目盲目发展,促进绿色低碳发展,助力加快形成新质生产力。	本次为中试基地项目,符合开发区产业 定位要求,不属于高耗能、高排放、低水平 项目;中试成果的成功有利于促进当地新质 生产力的形成与发展。	相符
14.2	建设项目开展环评工作初期,应分析与 态环境分区管控要求的符合性,对不满足要求的,应进一步论证其生态环境可行性,	本次为中试基地项目,经论述(1.5.2.4 章节)符合当地生态环境分区管控要求。	相符
14.3	产业园区项目招引时应将大态环境分区管控要求作为重要依据,园区内各类开发建设活动应严格落实生态环境准分单,从源头上控制环境污染、降低环境风险、推动绿色发展。	本项目制定的入驻条件中,已明确入驻 企业应满足开发区管理要求,其中包括符合 生态环境分区管控要求。	相符
15	《泰州市国土空间总体规划(2021-2035年	三)》	

		ŽĮ, YV	
15.1	区域产业创新协同。落实《长江三角洲区域一体化发展规划纲要》江苏实施方案要求,对接上海、南京、杭州等科创中心,着力推进在生物医药、高端装备制造、汽车及零部件、化工及新材料、海工装备及高技术船舶等产业领域的协作创新,合作共建创新载体;承接江北新区、张江、临港、虹桥等重点区域高端制造项目,强化产业园区合作共建,协同推进产业转型升级,共筑先进制造业走廊。	拟建项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,项目的实施可有助于推进产业转型升级。	相符
16	《省政府关于印发江苏省空气质量持续改善行动计划实施方案的通	知》 (发发〔2024〕53 号)	
16.1	坚决遏制高耗能、高排放、低水平项目盲目上马。研究制定"两高"项目管理目录。严禁核准或备案钢铁(炼钢、炼铁)、焦化、电解铝、水泥(熟料)、平板玻璃(不含光伏压延玻璃)和炼化(纳入国家产业规划除外)等行业新增产能的项目。到 2025 年,短流程炼钢产量占比力争达 20%以上。	》/拟建项目属于(M7320)工程和技术研 彩和试验发展,为中试试验公共服务平台, 不属于"两高"项目。	相符
16.2	加快退出重点行业落后产能。落实《产业结构调整指导目录》,逐步退出限制等5万行业工艺和装备。逐步淘汰步进式烧结机和球团竖炉以及半封闭式硅锰合金、镍铁 为碳铬铁、高碳锰铁电炉。	拟建项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,后期入驻项目均不属于《产业结构调整指导目录》限值或淘汰类,不涉及落后产能项目入驻。	相符
16.3	推进园区、产业集群绿色低碳化改造与综合整治。中小型传统制造业业集中的城市要制定涉气产业集群发展规划,严格项目审批,严防污染下乡。针对现实业集群制定专项整治方案,依法淘汰关停一批、搬迁入园一批、就地改造一批、做价资强一批。	不涉及	相符
16.4	优化含 VOCs 原辅材料和产品结构。严格控制生产和使用 VOCs 含量涂料、油墨、胶料剂、清洗剂等建设项目。加大工业涂装、包装印刷和电子,业清洁原料替代力度。鼓励和推进汽车 4S 店、大型汽修厂实施水性涂料替代。	拟建项目通过统一购买、管理原辅料, 对入驻企业 VOCs 原辅材料的使用进行严 格管控。	相符
16.5	加强扬尘精细化管控。积极实施"清洁城市行动"。推进5000平方米及以上建筑工地安装视频监控并接入当地监管平台。鼓励推广使用新光源渣土运输车辆。推广装配式施工,推进"全电工地"试点。	拟建项目施工期拟安装视频监控并接 入当地监管平台。	相符
16.6	强化 VOCs 全流程、全环节综合治理。於關储罐使用低泄漏的呼吸阀、紧急泄压阀,定期开展密封性检测。	拟建项目不涉及原料储罐的使用。	相符
16.7	推进重点行业超低排放与提标改合 有序推进铸造、垃圾焚烧发电、玻璃、有色、石灰、矿棉等行业深度治理。持续推进煤电机组深度脱硝改造,力争 2024 年底前完成单机 10 万千瓦及以上煤电机组深度脱硝改 任务。到 2025 年底,全省水泥和焦化企业基本完成超低排放改造。实施重点行业绩效 发提升行动。	拟建项目属于(M7320)工程和技术研究和试验发展,为中试试验公共服务平台,不属于超低排放和提标改造行业。	相符
17	《医药工业高质量发展行动计划(2023-2025	;年) 》	
17.1	提升产业基础能力,要提升医药工业的基础能力,包括加强产业基础研究、提高技术	拟建项目属于(M7320)工程和技术研	相符
	 		

		XL XV	
	创新能力、加强产业基础设施建设等方面。	究和试验发展,后期权有生物医药类中试项	
17.2	推进技术创新发展 。要推进技术创新发展,加强医药产业的技术创新和研发能力。	目入驻,对于提升生物医药行业基础能力和 技术创新有积极的促进作用。	
18	《关于试点建设江苏省化工中试基地的通知》(苏化治	办〔2022〕30号》	
18.1		本次即为拟建的中试基地,建设单位对 拟入式之处充分评估其性质和工艺特性;严 格的 法律法规和标准规范相关规定,进一 知化完善建设方案,明确重点任务和进度 安排,确保中试基地建设取得实效。	相符
18.2	化工中试基地是化工行业创新发展的重要载体,面临着与成熟化工工艺不同的安全环保风险。中试基地要高度重视安全环保工作,全面严格落实安全环保管理责任,持续提供企会环保保障能力,为中试项目平稳运行创造良好的环境和条件。要健全组织管理机构、汽善各项规章制度,选配责任心强、专业素质高的人员团队负责基地建设和管理。中试基本内不得建设工业化生产装置,不具备生产条件或存在重大隐患的中试项目不得投入使用。	建设单位将处理安全专班,对整个中试基地的安全环保风险实时管控;同时,对入驻企业提出了安全评估前置的硬性要求,从而源头控制重大隐患项目的入驻。	相符
18.3	附件核定了第一批中试基地分别为张家港保税区化工中试基地、如东 关 口化学工业园化工中试基地、泰兴经济开发区化工中试基地。	本次即为泰兴经济开发区中试基地。	相符
19	《化工园区中试基》设导则》(GB/T44710	0-2024)	
19.1	选址: 1.中试基地应在通过认定的化工园区内建设。 2.中试基地选址应符合化工园区总体规划。 3.中试基地选址应符合化工园区的环境保护、安全从业卫生、交通运输及消防应急救援等方面的规定。 4.中试基地厂址宜靠近化工园区集中的公用力及及辅助生产设施。 5.中试基地应具有方便的外部交通运输系统。 6.中试基地内不应有化工园区排洪沟交线。 7.中试基地中试装置区不应有地区域、空电力线路穿越。 8.中试基地中试装置区内地质载流流流足装置和建(构)筑物的需要,不应位于地下采空或塌陷区域。	拟建中试基地位于泰兴经济开发区,该 开发区属于江苏省通过认定的化工园区,拟 建地符合化工园区总体规划、符合化工园区 的环境保护、安全、职业卫生、交通运输及 消防应急救援等方面的规定;周边交通便 利,厂区无排洪沟、架空电力穿越等。	相符
19.2	外部距离: 中试基地与相邻工厂或为施的防火间距应符合 GB 51283 的规定。涉及重大危险源或硝化、氯化、氟化、重氮化分类氧化五种危险化工工艺的装置设施、单元,应同时符合 GB 50160的规定。	根据设计, 拟建基地与相邻工厂或设施的防火间距符合 GB 51283 的规定。	相符

		ZL (3)	
19.3	总平面布置: 1.中试基地总平面布置,应根据中试类型和火灾危险性,结合中试基地的自然环境、外部依托等条件综合确定。 2.中试基地总平面应按功能分区布置,宜分为:管理设施区、中试装置区、公辅设施区、仓储设施区等,并应根据工艺流程和中试特点,合理确定各功能分区的大小。 3.总平面布置应按照功能分区合理确定通道宽度。通道宽度应符合防火、安全、卫生间距的要求,并满足各种管线、管架、消防道路以及绿化的设置需要。 4.中试基地内总平面布置应符合 GB 55037、GB 50016、GB 51283 的规定。涉及重大危险源或硝化、氯化、氟化、重氮化、过氧化五种危险化工工艺的装置设施、单元,应同时符合 GB 50160 的规定。 5.中试基地内的管理设施应远离爆炸危险源,并宜位于生产、储存和装卸可燃液体液化经、易燃及易爆物品的全年最小频率风向的下风侧。 6.中试基地内可能散发、泄漏有毒、有害气体及粉尘的设施,宜远离管理试验之布置,并宜位于中试基地全年最小频率风向的上风侧。 7.中试基地内可能散发、泄漏有毒、有害气体及粉尘的设施,宜远离	文字平面布局图,基地整体布局依据为 文字类型和火灾危险性,以及中试基地的自 大环境、外部依托等条件确定的。 拟建基地图纸已按照要求进行了功能 分区,并通过了图纸审查。	相符
19.4	环保: 1.中试基地新建的环境保护设施应与主体工程同时设计、同场产工和同时投入运行,并应符合环境影响评价及其批复文件要求。 2.中试基地应独立建设或依托现有环保设施,确保中关项目产生的废水、废气和固体废弃物达标处理。 3.噪声防治应选用低噪声设备,并应采取消声,不声、吸声等降噪措施。厂界噪声不应超过 GB 12348 的规定,超标时应采取控制措施。 4.根据环境影响评价及其批复文件要求,为建设用地的土壤和地下水污染情况进行风险评估,设置地下水污染监测井。防渗措施应产台 GB/T 50934 的规定。服役期满、关停和搬迁的中试基地,当场地土壤受到污染时,必采取土壤修复措施,消除污染。 5.中试基地应建立完善有效的环境风险防控设施和有效的拦截、降污、导流等措施,建设应急事故设施(池),事故污水(液)不应进入外环境,相关设施的设置应符合 GB/T50483的规定。	拟建基地将严格执行"三同时"制度,基地已统一设置有三废处理装置,确保污染物达标排放;对高噪设备进行了降噪隔声,确保厂界达标。待基地投运后,将设置地下水污染监测井,并定期开展土壤隐患排查工作;基地已设置有1500m³的事故池,可满足应急暂存需求。	相符
20		政规〔2024〕9 号〕	
20.1	加强创新载体建设。大建立龙头企业、高校、科研院所在重点领域加快建设一批重点实验室、工程研究中心、大造业创新中心、企业技术中心,检验检测中心等创新平台。鼓励各地	项目属于(M7320)工程和技术研究和	相符

	创新化工中试管理,对化工中试项目安评、环评适度包容性审批,加快科研成果产业化步伐, 试验发展,为中试试验2块服务平台。对于 促进中试与创新链、产业链协同发展。 区域技术创新等具有全大的促进作用。	
20.2	开展核心技术攻关。聚焦产业链短板弱项,支持龙头企业牵头、联合产业链上下游创新资源组建创新联合体,实施一批原创性、引领性协同攻关项目。鼓励和推动有能力的单位承担具有战略性全局性前瞻性的国家重大科技项目,加快突破新型催化。绿色合成、高效分离、功能结构一体化高分子材料制造、"绿氢"规模化应用等关键技术,推动化工产业向高科技、高附加值方向发展。	
21	《新污染物治理行动方案》(国办发〔2022〕	
21.1	经对照《重点管控新污染物清单(2023年版)》,拟入驻的 7 个中试项目所用原辅料均属于《中国现有化学物质名录》汇总名单内;如后续其他入驻企业涉及新化学物质落实企业新化学物质环境风险防控主体责任。 经对照《重点管控新污染物清单(2023年版)》,拟入驻的 7 个中试项目所用原辅料均属于《中国现有化学物质名录》汇总名单内;如后续其他入驻企业涉及新化学物质的使用,中试基地及入驻企业将同时开展新化学物质环境管理登记制度。严格执行《新化学物质环境管理登记办法》,落实基地及入驻企业新化学物质环境风险防控主体责任。	相符
21.2	企业应采取便于公众知晓的方式公布使用有毒有害原料的情况以及排放有毒有害化学 中试基地将协助入驻企业在基地网站 物质的名称、浓度和数量等相关信息。 对该部分信息进行公示。	相符
22	《省生态环境厅关于加强重点管控新污染物和优先控制化学品环境管理工作的通知》(苏环办〔2023〕314号)	
22.1	经对照《重点管控新污染物清单(2023 落实《重点管控新污染物清单》环境风险管控清施。按照《重点管控新污染物清单(2023 年版)》要求,对列入清单的重点管控新污染物,采取相应的禁止、限制、限排、环境监测、 隐患排查、环境风险评估等环境风险管控措施。涉重点管控新污染物的企业依照《环境监管 重点单位名录管理办法》纳入环境监管等,其单位。	相符
22.2	落实《优先控制化学品名》,环境风险管控措施。对列入《优先控制化学品名录》的化 学品,针对其产生环境与像多风险的主要环节,依据相关政策法规,结合经济技术可行性, 采取纳入排污许可制度资度、实行限制措施(限制使用、鼓励替代)、实施清洁生产审核及 信息公开等一种或几乎效检管控措施,最大限度降低化学品的生产、使用对人类健康和环境 甲苯聚合溶液",涉及到甲苯的使用及排放;	相符

		XL IS	
	的重大影响。	对此,中试基地要求人用企业定期公开其名	
22.3	落实《有毒有害水污染物名录》《有毒有害大气污染物名录》要求。建立排放《有毒有害水污染物名录》所列有毒有害水污染物的企业事业单位和其他生产经营者清单。依据《中华人民共和国水污染防治法》,涉及排放名录中所列有毒有害水污染物的企业事业单位和其他生产经营者,要对排污口和周边环境进行监测,评估环境风险,排查环境安全隐患,并公开有毒有害水污染物信息,采取有效措施防范环境风险。依据《中华人民共和国大气污染体治法》,涉及排放名录中所列有毒有害大气污染物的企业事业单位,要按照国家有关规定建设环境风险预警体系,对排放口和周边环境进行定期监测,评估环境风险,排查环境之产隐患,并采取有效措施防范环境风险。	称、数量、用途及排入情况。 经对照第一、第二批《有毒有害水污染物名录》,对入驻的7个中试项目中,涉及到甲苯的使的及排放; 《有毒有害大气污染物名录》(2000年版),拟入驻的7个中试项目中,没名录中的有毒有害大气污染物使用及结录中的有毒有害大气污染物使用及排放; 中试基地作为管理单位将:①建立排放有毒有害水污染物的企业清单;②对排污口和周边环境进行监测,评估环境风险,并公开污染物相关信息;③针对有毒有害水污染物,基地与入驻企业共同采取相应的环境风险防范措施。	相符
22.4	加强新化学物质环境管理。依据《新化学物质环境管理等分为法》,监督相关企业事业单位落实相关要求,组织企业开展生产、进口和加工使用和化学物质自查。	中试基地要求拟入驻中试项目优先选用列入《中国现有化学物质名录》的原辅料;如入驻项目涉及使用新化学物质,中试基地作为管理单位将对入驻企业开展生产、进口和加工使用新化学物质排查。中试基地统一对入驻企业所用原辅料进行购置与分配,因此,可第一时间对入驻企业是否用到新化学物质进行判定。	相符
23	《关于加强重点行业新污染物建设项目环境影响评价工作的意见	L》(环环评〔2025〕28 号)	
23.1	重点关注重点管控新污染物清单、	本项目为(M7320)工程和技术研究和 试验发展,不属于重点行业,经对照重点管 控新污染物清单、有毒有害污染物名录、优 先控制化学品名录以及《关于持久性有机污 染物的斯德哥尔摩公约》附件中已发布环境 质量标准、污染物排放标准、环境监测方法 标准或其他具有污染治理技术的污染物等, 本项目使用的甲苯有毒有害污染物名录、优	相符

		XL IS	
		先控制化学品名录范围内,属于新污染物, 纳入本项目评价因子、详见"2.2.2 评价因子" 章节。	
23.2	各级环评审批部门在受理和审批建设项目环评文件时,应落实重点管控新污染物清单、产业结构调整指导目录、《斯德哥尔摩公约》、生态环境分区管控方案和项目所在园区规划环评等有关管控要求。对照不予审批环评的项目类别,严格审核建设项目原辅材料和产品,对于以禁止生产、加工使用的新污染物作为原辅料或产品的建设项目,依法不予审批。	中试基地部分入驻项目涉及新污染物甲苯,项员的合生态环境分区管控方案和项目所在的区规划环评等有关管控要求,对照附款。予审批环评的项目类别",中试基地是于"不予审批环评的项目类别"。详见,15.1 产业政策相符性分析"章节。	相符
23.3	优化原料、工艺和治理措施,从源头减少新污染物产生。建设项目应尽可能发发、使用低毒低害和无毒无害原料,减少产品中有毒有害物质含量;应采用清洁的生产工艺,提高资源利用率,从源头避免或削减新污染物产生。强化治理措施,已有污染防治技术的新污染物,应采取可行污染防治技术,加大治理力度,减轻新污染物排放对环境的影响。鼓励建设项目开展有毒有害化学物质绿色替代、新污染物减排以及污水污泥、废液发生的污染物治理等技术示范。	本次拟有7个中试项目入驻,其中涉及新污染物使用的为特种高分子新材料中试项目,对应的新污染物为甲苯。该中试的目的之一则是验证原辅料"PAE-甲苯聚合液"脱挥运行数据。中试基地及入驻企业将积极响应《关于加强重点行业涉新污染物建设项目环境影响评价工作的意见》(环环评(2025)28号)要求,废气中甲苯采用RTO焚烧处理;本项目针对新污染物均采取可行污染防治技术,可减轻新污染物排放对环境的影响。	相符
23.4	核算新污染物产排污情况。环评文件应给出所有列义更点管控新污染物清单、有毒有害污染物名录和优先控制化学品名录的化学物质生产或使用的数量、品种、用途,涉及化学反应的,分析主副反应中新污染物的迁移转化情况。并移涉及的新污染物纳入评价因子;核算各环节新污染物的产生和排放情况。改建、扩建,其上还应梳理现有工程新污染物排放情况,鼓励采用靶向及非靶向检测技术对废水、废气及资渣中的新污染物进行筛查。	本次拟入驻的中试项目(PAE)不直接使用甲苯溶剂,而是对PAE-甲苯聚合液进行脱挥,不涉及化学反应,从而确定PAE稳定性及脱挥最优运行参数;本项目将甲苯纳入评价因子,并核算甲苯的产生和排放情况。	相符
23.5	对已发布污染物排放标准的新污染处格排放达标要求。新建项目产生并排放已有排放标准新污染物的,应采取措施确保排放设标。涉及新污染物排放的改建、扩建项目,应对现有项目废气、废水排放口新污染物性放情况进行监测,对排放不能达标的,应提出整改措施。对可能涉及新污染物的废母液、精馏残渣、抗生素菌渣、废反应基和废培养基、污泥等固体废物,应根据国家危险废物。是进行判定,未列入名录的固体废物应提出项目运行后按危险废物鉴别标准进行鉴别的要求,属于危险废物的按照危险废物污染环境防治相关要求进行管理。对涉及新污染物的生产、贮存、运输、处置等装置、设备设施及场所,应按相关国家标	中试基地自身运营不涉及新污染物的产生与排放,拟入驻的7个中试项目中的1个存在新污染物甲苯排放,对应的废气净化措施为RTO焚烧,执行《合成树脂工业污染物排放标准》(GB31572-2015,含2024年修改单);该中试项目不涉及含甲苯固废的产生,且含甲苯原辅料PAE-甲苯聚合液	相符

		XL XX	
	准提出防腐蚀、防渗漏、防扬散等土壤和地下水污染防治措施。	暂存场所(基地甲类文庫及中试车间)均已	
		落实防腐蚀、防渗漏、防扬散等土壤和地下	
		水污染防治措施。	
		本项目的分新污染物甲苯开展环境质	
	对环境质量标准规定的新污染物做好环境质量现状和影响评价。建设项目现状评价因子	量现状调查、收集评价范围内和建设项目相	
	和预测评价因子筛选应考虑涉及的新污染物,充分利用国家和地方新污染物环境监测试点成	关的亲************************************	
	果,收集评价范围内和建设项目相关的新污染物环境质量历史监测资料(包括环境空气、周	行於 益测;经评价环境空气、周边地表水	
23.6	边地表水体及相应底泥/沉积物、土壤和地下水、周边海域海水及沉积物/生物体等),没有	土壤和地下水中二氯甲烷、甲苯均可达	相符
	相关监测数据的,进行补充监测。对环境质量标准规定的新污染物,根据相关环境质量标准	的相应标准要求。本项目将相应已有环境质	
	进行现状评价,环境质量标准未规定但已有环境监测方法标准的,应给出监测值。将相区	「量标准的新污染物纳入环境影响预测因子	
	有环境质量标准的新污染物纳入环境影响预测因子并预测评价其环境影响。	并预测评价其环境影响;根据预测结果,新	
		污染物对周边环境的影响可接受。	
	强化新污染物排放情况跟踪监测。应在涉及新污染物的建设项目环评文件,为确提出	本项目将相应的新污染物纳入监测计	
23.7	将相应的新污染物纳入监测计划要求;对既未发布污染物排放标准,也无污染治技术,但	划要求,加强日常监控和监测,掌握新污染	相符
23.7	已有环境监测方法标准的新污染物,应加强日常监控和监测,掌握新污染物排放情况。将周	物排放情况;将周边环境的相应新污染物监	4,114.1
	边环境的相应新污染物监测纳入环境监测计划,做好跟踪监测。	测纳入环境监测计划,做好跟踪监测。	
	提出新化学物质环境管理登记要求。对照《中国现有化学物风景》,原辅材料或产品	对照《中国现有化学物质名录》,本项	
23.8	属于新化学物质的,或将实施新用途环境管理的现有化学物质人为于允许用途以外的其他工	目所使用的原辅材料和产品均不属于新化	相符
23.0	业用途的,应在环评文件中提出按相关规定办理新化学物质环境管理登记的要求。	学物质, 不涉及办理新化学物质环境管理登	411.1
		记。	
	生态环境部门依法核发排污许可证时,石化、涂料,药织印染、橡胶、农药、医药等行	本项目应将新污染物甲苯管控要求依	
	业应按照排污许可证申请与核发技术规范,载明排放标准中规定的新污染物排放限值和自行	法纳入排污许可管理,按照排污许可证申请	
23.9	监测要求;按照环评文件及批复,载明新污染物於制措施要求。生态环境部门应当按排污许	与核发技术规范、环评文件及批复, 载明排	相符
	可证规定,对新污染物管控要求落实情况开展的法监管。	放标准中规定的新污染物甲苯排放限值和	
	-/-	自行监测和控制措施要求。	
24	《全省》、环境安全与应急管理"强基提能"三年行动计划》	(苏环发〔2023〕5号)	
	推动环境安全主体责任落实。建立企业环境安全责任"三落实三必须"机制。落实主要负		
	责人环境安全第一责任人责任,公司对企业环境风险物质和点位全部知晓、风险防控体系全	建立企业环境安全责任"三落实三必	
24.1	部明晰;落实环保负责人主管设定,必须对企业风险源防控应对措施、应急物资和救援力量	须"机制,落实主要负责人环境安全第一责	相符
	情况全部知晓;落实岗位人。接责任,必须对应急处置措施、应急设施设备操作规程熟练	任人责任、环保负责人主管责任和岗位人员	117
	掌握。企业"三落实三必类",行情况纳入常态化环境安全隐患排查内容,执行不到位的,作	直接责任。	
-	为重大隐患进行整治		

		XLI	
24.2	建设项目环评文件必须做到环境风险识别、典型事故情形、风险防范措施、应急管理制度和竣工验收内容"五个明确"。	项目环评明确了好境风险识别、典型事故情形、风险防范措施、应急管理制度和竣工验收内容。	相符
24.3	推动环境应急基础设施建设。构筑企业"风险单元-管网、应急池-厂界"的突发水污染事件"三道防线",设置环境风险单元初期雨水及事故水截流、导流措施,建设排水管网雨污分流系统和事故应急池等事故水收集设施,厂区雨水排口配备手自一体开关切换装置,上述点位均接入企业自动化监控系统。	企业建立 一级防控体系,设置环境风险 单元初期的 X 及事故水截流、导流措施,建 设排	相符
24.4	强化常态化隐患排查治理。环境风险企业建立常态化隐患排查制度。较大以上等级风险企业每半年至少开展一次全面综合排查,每月至少开展一次环境风险单元巡视排查,列升稳患清单,限期整改闭环。每半年至少开展一次专项培训,提升主动发现和解决环境隐患,题的意愿和能力。	全业建立常态化隐患排查制度,每半年至少开展一次全面综合排查,每月至少开展一次环境风险单元巡视排查;每半年至少开展一次专项培训。	相符
25	《江苏省固体废物全过程环境监管工作意》(苏环丸	り(2024)16号)	
25.1	规范项目环评审批。建设项目环评要评价产生的固体废物种类、数量、来源和属性,论述贮存、转移和利用处置方式合规性、合理性,提出切实可行的污染体的策措施。	本项目已针对产生的各类固废进行分析论述,危险废物委托有资质单位处置、一般工业固废分类上收集、综合处置,生活垃圾环卫清运。	相符
25.2	落实排污许可制度。企业要在排污许可管理系统中全面、准确产报工业固体废物产生种类,以及贮存设施和利用处置等相关情况,并对其真实性负责太实际产生、转移、贮存和利用处置情况对照项目环评发生变动的,要根据变动情况及时,取重新报批环评、纳入环境保护竣工验收等手续,并及时变更排污许可。	待中试基地投运后,由中试基地统一负 责在排污许可管理系统中全面、准确申报工 业固体废物产生种类,以及贮存设施和利用 处置等相关情况,并对其真实性负责。	相符
25.3	规范贮存管理要求。根据《危险废物贮存污染货机标准》(GB 18597-2023),企业可根据实际情况选择采用危险废物贮存设施或贮存实内类方式进行贮存,符合相应的污染控制标准;不具备建设贮存设施条件、选用贮存点式的,除符合国家关于贮存点控制要求外,还要执行《江苏省危险废物集中收集体系建设工作方案(试行)》(苏环办〔2021〕290号)中关于贮存周期和贮存量的要求,I级 级 、III级危险废物贮存时间分别不得超过 30 天、60 天、90 天,最大贮存量不得超过 60。	中试基地统一设置危废库,入驻企业设置贮存点用于危废临时暂存;危废库已按照相关标准进行规划化设计与建设;贮存点位于中试区,最大贮存量控制在1吨以下。	相符
25.1	强化转移过程管理。全面落实方险废物转移电子联单制度,实行省内全域扫描"二维码"转移。加强与危险货物道。 输电子运单数据共享,实现运输轨迹可溯可查。危险废物产生单位须依法核实经营单 体资格和技术能力,直接签订委托合同,并向经营单位单位提供相关危险废物产生 大人具体成分,以及是否易燃易爆等信息	中试基地统一负责基地内危险废物的 集中暂存及委外处置,并面落实危险废物转 移电子联单制度,实行省内全域扫描"二维 码"转移。	组分
25.2	落实信息公开制度。危险废物环境重点监管单位要在出入口、设施内部、危险废物运输	中试基地投入运营后,将在出入口、设	相符
	/ KT	· · · · · · · · · · · · · · · · · · ·	

		ZL ^{VO}	
	车辆通道等关键位置设置视频监控并与中控室联网,通过设立公开栏、标志牌等方式,主动		_
	公开危险废物产生和利用处置等有关信息。	设置视频监控并与中枢室联网,通过设立公	
		开栏、标志牌等方式,主动公开危险废物产	
		生和利用处置等有关信息	
	规范一般工业固废管理。企业需按照《一般工业固体废物管理台账制定指南(试行)》	中试工不设置一般工业固废库,而是	
25.3	(生态环境部 2021 年第 82 号公告)要求,建立一般工业固废台账,污泥、矿渣等同时还需	由入政党 自行收集处置,入驻企业将按照	相符
	在固废管理信息系统申报,电子台账已有内容,不再另外制作纸质台账。	文件。求,建立一般工业固废台账。	
		<i>9///</i> .• I	

由上表可知,本项目符合《挥发性有机物(VOCs)污染防治技术政策》(环境保护部、2013 年第 31 号)、《重点行业挥发性有机物综合治理方案》(环大气〔2019〕53 号)、《实验室废气污染控制技术规范》(DB、14455-2023)、《江苏省地表水氟化物污染治理工作方案(2023~2025 年)》(苏污防攻坚指办〔2023〕2 号)、《省政府关于印发》、省化工园区管理办法的通知》(苏政规〔2023〕16 号)、《国务院关于印发空气质量持续改善行动计划的通知》(国发〔2023〕24 号、《中华人民共和国长江保护法》《生态环境分区管控管理暂行规定》(环环评〔2024〕41 号)、《省政府关于印发江苏省空气质量对外改善行动计划实施方案的通知》(苏政发〔2024〕53 号)、《化工园区中试基地建设导则》(GB/T44710-2024)、《医药工业高质量、行动计划〔2023-2025 年)》《泰州市国土空间总体规划〔2021-2035年)》《关于印发泰州市化工中试基地和中试项目管理办法(试验)的通知》(泰工信规〔2025〕1号)、《关于加强重点行业涉新污染物建设项目环境影响评价工作的意见》(环环评〔2025〕28 是《全省生态环境安全与应急管理"强基提能"三年行动计划》(苏环发〔2023〕5 号)等政策、规范及标准的相关要求。

2. 总则

2.1. 编制依据

2.1.1. 国家政策及法规

- (1) 《危险化学品安全管理条例》,2011年12月1日实施;
- (2)《关于进一步加强环境影响评价管理防范环境风险的通知》(环发〔2012〕77号》
- (3) 《关于切实加强风险防范严格环境影响评价管理的通知》(环发〔2012〕98月
- (4)《挥发性有机物(VOCs)污染防治技术政策》(国家环保部公告 2013 年第 3 ǐ 号), 2013 年 5 月 24 日实施;
 - (5) 《中华人民共和国环境保护法》,2015年1月1日实施;
- (6)《企业事业单位突发环境事件应急预案备案管理办法(试行》)(环发〔2015〕4 号);
 - (7)《国务院关于印发水污染防治行动计划的通知》《发 (2015) 17号);
 - (8)《国务院关于印发土壤污染防治行动计划的通(**)(国发〔2016〕31号);
 - (9)《控制污染物排放许可制实施方案》(国办》(2016)81号);
 - (10) 《建设项目环境保护管理条例》, **20** 平 10 月 1 日实施:
- (11)《关于做好环境影响评价制度与执资许可制衔接相关工作的通知》(环办环评〔2017〕 84号):
 - (12) 《中华人民共和国水污染防治法》,2018年1月1日实施;
- (13)《工矿用地土壤环境管理办法(试行)》(生态环境部令第3号,2018年8月1日实施);
 - (14) 《中华人修共和国大气污染防治法》,2018年10月16日实施;
 - (15) 《中华人民共和国环境影响评价法》,2018.12.29 实施;
 - (16) 华华人民共和国土壤污染防治法》,2019年1月1日起实施;
 - ·《环境影响评价公众参与办法》(生态环境部令第4号),于2019年1月1日起
 - (18)《关于印发〈重点行业挥发性有机物综合治理方案〉的通知》,环大气(2019)53
- (19)《产业结构调整指导目录(2024年本)》(中华人民共和国国家发展和改革委员会令 第7号);

- (20)《固定污染源排污许可分类管理名录(2019 年版)》,环境保护部,2019.12.20 起实施;
 - (21) 《2020年挥发性有机物治理攻坚方案》, (环大气(2020)33号);
- (22)《中华人民共和国固体废物污染环境防治法》,2020年修订,2020年9月1日实施:
 - (23) 《建设项目环境影响评价分类管理名录》,2021年1月1日实施;
 - (24) 《国家危险废物名录》(2025年版);
- (25)《国务院关于加快建立健全绿色低碳循环发展经济体系的指导意见》。国发〔2021〕 4号〕,2021年2月2日发布:
 - (26)《中华人民共和国长江保护法》,2021年3月1日起实施
 - (27) 《排污许可证管理条例》(2021年3月1日实施)
 - (28)《关于加快解决当前挥发性有机物治理突出问题的使知》,环大气(2021)65号。
- (29) 《环境保护综合名录(2021 年版)》(环办**3** 函〔2021〕495 号),2021 年 10 月 25 日发布;
 - (30) 《地下水管理条例》(自 2021 年 12 **以** 日起施行)
 - (31) 《危险废物转移管理办法》(部本第 23 号), 自 2022 年 1 月 1 日起施行;
 - (32) 《中华人民共和国噪声污染防治法》,2022年6月5日实施;
 - (33) 《长江经济带发展负面海单指南(试行,2022年版)》(长江办〔2022〕7号);
 - (34) 《新污染物治理行为方案》(国办发〔2022〕15号);
- (35)《国务院安委公方公室、生态环境部、应急管理部关于进一步加强环保设备设施安全生产工作的通知》《安委办明电〔2022〕17号);
 - (36)《关于印发〈"十四五"噪声污染防治行动计划〉的通知》(环大气〔2023〕1 号);
 - - ▶《2023 年生态环境分区管控成果动态更新工作方案》(环办环评函(2023)81号);
 - 39)《国务院办公厅关于印发〈突发环境应急预案管理办法〉的通知》(国办发〔2024〕
 - (40)《生态环境分区管控管理暂行规定》(环环评〔2024〕41号);
- (41)《国家发展改革委等部门关于印发〈绿色低碳转型产业指导目录〉(2024 年版)的通知》(发改环资〔2024〕165 号);

- (42) 《工业和信息化部办公厅关于做好 2024 年工业和信息化质量工作的通知》(工信 厅科函〔2024〕113号):
- (43)《国家发展改革委等部门关于印发〈绿色低碳转型产业指导目录〉(2024年版) 的通知》(发改环资〔2024〕165号);
- 评(2023) (44)《关于加强重点行业涉新污染物建设项目环境影响评价工作的意见》(环环识 28号);
 - (45)《重点管控新污染物清单(2023年版)》;
 - (46) 《优先控制化学品名录(第一批)》:
 - (47) 《优先控制化学品名录(第二批)》:
 - (48)《有毒有害水污染物名录(第一批)》;
 - (49)《有毒有害水污染物名录(第二批)》;
 - (50)《有毒有害大气污染物名录(2018年)》;
- (51) 《国家发展改革委 商务部 市场监管总局 〈市场准入负面清单(2025 年 版)〉的通知》(发改体改规〔2025〕466号)
- (52)《水利部办公厅关于印发长江 二级支流目录的通知》(办河湖(2025) 64号)。

2.1.2. 地方政策及法规

- 台技术规范》(苏环办(2014)3号);
- 业挥发性有机物污染控制指南〉的通知》(苏环办〔2014〕 128号);
- 目烟粉尘、挥发性有机物准入审核的通知》(苏环办〔2014〕148 (3)号);
 - 关于印发江苏省水污染防治工作方案的通知》(苏政发〔2015〕175号): 省政府关于印发江苏省土壤污染防治工作方案的通知》(苏政发(2016)169号):
 - 《江苏省大气污染防治条例》,2018年3月28日修订;
 - 《江苏省长江水污染防治条例》,2018年3月28日修订;
 - 《江苏省环境噪声污染防治条例》,2018年3月28日修订; (8)
 - (9) 《江苏省固体废物污染环境防治条例》,2018年3月28日修订;

- (10)《省政府关于印发江苏省国家级生态保护红线规划的通知》(苏政发〔2018〕74 号):
 - (11) 《江苏省挥发性有机物污染防治管理办法》(苏政发〔2018〕119号);
- (12)《江苏省大气污染防治条例》(2018年11月23日江苏省第十三届人民代表大会常务委员会第六次会议修订通过),自2018年11月23日起施行;
- (13)《省政府办公厅关于江苏省化工园区(集中区)环境治理工程的实施意见》 办发〔2019〕15号);
- (14)《江苏省生态环境厅关于进一步做好建设项目环评审批工作的通知》(2019) 36号);
 - (15)《江苏省化工产业安全环保整治提升方案》(苏办〔2019%)6号);
- (16)《省政府关于印发江苏省生态空间管控区域规划的通知《苏政发〔2020〕1号), 江苏省人民政府,2020年1月8日;
- (17)《省生态环境厅关于印发〈省生态环境厅关于**以**安全生产专项整治工作实施方案〉的通知》(苏环办〔2020〕16 号);
 - (18)《江苏省"三线一单"生态环境分区管长方案》(苏政发〔2020〕49号);
- (19)《省政府关于加强全省化工园区**工集中区规范化管理的通知》(苏政发〔2020〕 94号):
 - (20)《关于做好生态环境和光管理部门联动工作的意见》(苏环办(2020)101号);
- (21)《省生态环境厅关**大进**一步加强建设项目环评审批和服务工作的指导意见》(苏环办(2020)225号);
- (22)《省生态环境广关于做好江苏省危险废物全生命周期监控系统上线运行工作的通知》 (苏环办〔2020〕401号);
- - 24)《省生态环境厅关于加强全省环境应急工作的意见》(苏环发(2021)5号);
- (25)《省生态环境厅关于印发化工、印染行业建设项目环境影响评价文件审批原则的通知》(苏环办〔2021〕20号);
- (26)《关于印发江苏省工业园区(集中区)污染物排放限值限量管理工作方案(试行)的通知》(苏污防攻坚指办〔2021〕56号);

- (27) 《江苏省"十四五" 生态环境保护规划》 (苏政办发〔2021〕 84号):
- (28) 《关于进一步加强危险废物环境管理工作的通知》(苏环办〔2021〕207号);
- (29)《省生态环境厅关于将排污单位活性炭使用更换纳入排污许可管理的通知》(苏环办(2021)218号);
 - (30)《江苏省危险废物集中收集体系建设工作方案(试行)》(苏环办(2021)290号》
- (31)《省生态环境厅关于印发〈江苏省重点行业建设项目碳排放环境影响评价技术协南 (试行)〈的通知》(苏环办〔2021〕364号):
- (32) 《关于坚决遏制"两高"项目盲目发展的通知》(苏发改资环发〔20xx 837 号), 2021 年 8 月 20 日发布;
- (33)《江苏省水污染防治条例》(江苏省第十三届人民代表大量,务委员会第十九次会议通过),自2021年9月29日起施行;
- (34)《关于印发<2022年江苏省挥发性有机物减排攻坚大的通知》(苏大气办〔2022〕2号);
- (35)《省政府办公厅关于印发江苏省强化危险废物监管和利用处置能力改革实施方案的通知》(苏政办发〔2022〕11号):
 - (36)《关于试点建设江苏省化工中试验地的通知》(苏化治办〔2022〕30号);
- (37) 关于印发《〈长江经济带发展负面清单指南(试行,2022 年版)〉江苏省实施细则》的通知(苏长江办发〔2022〕、50号);
- (38)《省生态环境厅 省水利厅关于印发〈江苏省地表水(环境)功能区划〉(2021-2023年)的通知》,(苏环办人2022)82号);
 - (39) 《关于深入开展涉 VOCs 治理重点工作核查的通知》(苏环办〔2022〕218 号);
- (40)《省本态环境厅关于深入推进全省突发水污染事件应急防范体系建设工作的通知》 (苏环办 2012) 326号);
 - 《江苏省环境影响评价文件环境应急相关内容编制要点》(苏环办〔2022〕338号);
 - 42)《江苏省生态环境保护公众参与办法》(苏环规(2023)2号);
- (43)《关于印发〈江苏省地表水氟化物污染治理工作方案(2023~2025年)〉的通知》(苏污防攻坚指办(2023)2号);
 - (44)《全省生态环境安全与应急管理"强基提能"三年行动计划》(苏环发〔2023〕5号);
 - (45)《江苏省突发环境事件应急预案管理办法》(苏环发〔2023〕7号);

- (46)《省政府关于印发江苏省化工园区管理办法的通知》(苏政规〔2023〕16号);
- (47)《江苏省重点行业工业企业雨水排放环境管理办法(试行)》(苏污防攻坚指办〔2023〕 71号):
 - (48)《江苏省工业废水与生活污水分质处理工作推进方案》(苏环办〔2023〕144号);
- (49)《省生态环境厅关于做好〈危险废物贮存污染控制标准〉等标准规范实施后危险 物环境管理衔接工作的通知》(苏环办〔2023〕154号);
 - (50)《关于进一步加强生态保护红线监督管理的通知》(苏自然资函(2023) 80 号);
- (51)《省生态环境厅关于印发《江苏省固体废物全过程环境监管工作意见》的通知》(苏环办〔2024〕16号):
- (52)《省政府关于印发江苏省空气质量持续改善行动计划实施方**%加**通知》(苏政发(2024) 53号);
 - (53)《江苏省 2023 年度生态环境分区管控动态更新成果公告》(2024.6);
 - (54)《泰州市地表水水域功能类别划分》(泰政(2003)45号);
 - (55)《泰州市环境噪声达标区建设管理办法》(2008年3月);
- (56)《关于印发〈泰州市"三线一单"生态环境》区管控实施方案〉的通知》(泰环发〔2020〕 94号):
- (57)《市政府关于印发泰州市国民经济和社会发展第十四个五年规划和二〇三五年远景目标纲要的通知》(泰政发〔2021》第8号);
- (58)《市政府关于印发大家兴市"十四五"生态环境保护规划〉的通知》(泰政发〔2021〕 19号):
- (59)《关于印象〈泰州市生态环境安全与应急管理"强基提能"三年行动计划〉的通知》 (泰环办〔2023〕—85 号):
- (60) 于印发<泰州市生态环境分区管控方案(2024年版))>的通知》(泰环发(2025)
 - (大) 61)《关于印发泰州市化工中试基地和中试项目管理办法(试行)的通知》(泰工信规 2025)1号)。

2.1.3. 评价技术规范

- (1) 《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016);
- (2) 《环境影响评价技术导则 大气环境》(HJ2.2-2018):
- (3) 《环境影响评价技术导则 地表水环境》(HJ2.3-2018);

- (4) 《环境影响评价技术导则 地下水环境》(HJ 610-2016);
- (5) 《环境影响评价技术导则 声环境》 (HJ2.4-2021);
- (6) 《环境影响评价技术导则 生态影响》(HJ19-2022);
- (7) 《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018);
- (8) 《建设项目环境风险评价技术导则》(HJ169-2018);
- (9) 《大气污染治理工程技术导则》(HJ2000-2010);
- (10) 《危险废物贮存污染控制标准》(GB18597-2023);
- (11) 《危险废物识别标志设置技术规范》(HJ 1276-2022);
- (12) 《危险废物收集 贮存 运输技术规范》(HJ2025-2012);
- (13) 《危险化学品重大危险源辨别》(GB18218-2018);
- (14) 《固体废物鉴别标准 通则》(GB34330-2017);
- (15) 《国民经济行业分类》(GB/T4754-2017)及1号《**发**单:
- (17) 《排污许可证申请与核发技术规范 总则》》(HJ942-2018);
- (18) 《排污单位自行监测技术指南 总则》(hJ819-2017);
- (19)《危险废物管理计划和管理台账》、技术导则》(HJ 1259-2022);
- (20) 《工业企业土壤和地下水良谷监测 技术指南(试行)》(HJ 1209-2021);
- (21) 《蓄热式焚烧炉系统安**发**技术要求》(DB32/T4700-2024);
- (22) 《蓄热燃烧法工业**有**和废气治理工程技术规范》(HJ 1093-2020);
- (22)《实验室废气**冯》**控制技术规范》(DB32/T4455-2023)。

2.1.4. 其他相关文件 4

- (1) 项目各案補知书
- (2) 可能#研究报告
- (3) 企业现有项目环评及批复;
- **4**) 建设方提供的厂区平面图、工艺流程、污染物治理措施方案等工程资料;
- (5) 建设单位提供的其他资料。

O18);

2.2. 评价因子和评价标准

2.2.1. 环境影响因子识别

AND SHORE THE SHARE THE SH

表 2.2-1	不同阶段的环境影响因子识别
1 4.4-I	- イトコウルドリードス・ロングコングル・ボングウェビリーコー・レン・カリー

									70 2.12		, , ,	171 174	HATT	UAV 14	_ ,	/ 1/44				\sim					
	 资源			自然	环境					生态	环境					社	会环境	竟		X		生活	质量		
	程度	水土流失	地下水质	地表水文	地表水质	环境 空气	声环境	农田植物	森林植被	野生动物	水生动物	濒危 动物	渔业 养殖	土地利用	工业发展	农业发展	供小		节约能源	美学 旅游	健康安全	社会经济	娱乐	文物 古迹	生活水平
	场地清理	-1				-1	-1		-1					-1			29/0								
** T	地面挖掘					-1	-2									/5		-1							
施工期	运输					-1	-1								+1	心		-1				+1			
791	安装建设					-1	-1								+1<	》						+1			
	材料堆存					-1									\(\frac{1}{2}\)										
	废水				-1										炒 .										
	废气					-2														-1	-1				
运营	噪声						-1							7							-1				
期	固废	-1	-1						-1					-1							-1				
	产品											-X			+2			-1				+2			+2
	就业										X				+1							+1			+1

*注:3-重大影响;2-中等影响;1-轻微影响;"+"-表示有利影响;"-"-表示不利影响

通过表 2.2-1 可以看出,综合考虑本项目对环境的影响,本项目在建设施工期对环境影响可接受且多为短期影响,施工结束后很快恢复原有状态。在运行期的各种活动所产生的污染物对环境影源的影响是长期的,且影响程度大小有所不同。本项目的环境影响主要体现在对大气环境、水环境、声学环境及社会经济等方面。据此可以确定,本次评价时段以工程运营期为主,同时兼顾建设期。在评价时段内,对周围环境影响因子主要为废气、废水、固体废物

2.2.2. 评价因子

根据污染物等标排放量大小、区域污染源的排放情况、影响范围大小及是否具备相应规范的监测方法等方面综合考虑,确定本项目评价因子见表 2.2-2。

表 2.2-2	评价因子表

表 2.2-2						
要素	现状评价因子	影响评价因子	总量控制因子			
大气	SO ₂ 、NO ₂ 、PM ₁₀ 、CO、O ₃ 、PM _{2.5} 、丙酮、苯乙烯、甲苯、甲醇、二甲苯、丙烯腈、氯化氢、硫酸、苯并(a)芘、非甲烷总烃、氨、硫化氢、臭气浓度、氟化物、二噁英类	SO2、NO2、PM10、氨、丙酮、甲苯、甲醇、硫化氢、硫酸、HCI、氯气、CO、溴化氢、氟化氢、VOCs、非甲烷总烃、二噁英类等	SO ₂ 、NOx 和粒 物、Voes			
地表水	水温、pH、溶解氧、高锰酸盐指数、COD、 氨氮、总磷、氟化物、氯化物、挥发酚、石 油类、阴离子表面活性剂、硫化物、硫酸盐、 氰化物、铁、苯乙烯、甲苯、二甲苯、钴、 镍	氮、TP、石油类、氟化物、物、全盐量、动植物的	COD、NH3-N、TP、 TN			
地下水	水位、水温、K+、Na+、Ca ²⁺ 、Mg ²⁺ 、CO ₃ ²⁻ 、HCO ₃ -、Cl-、SO ₄ ²⁻ 、pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类、氰化物、砷、汞、铬(六价)、总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、总大肠菌群、菌落总数、阴离子表面活性剂、钴、镍、硫化物、甲苯、二甲苯、苯乙烯	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	/			
土壤	即H值、砷、镉、铬(六价)、铜、铅、镍、四氟化碳、氯仿、氯甲烷、1,1-二氯乙烷、1,2-二氯乙烷、烷、二氯甲烷 1,2-二氯乙烷、元二氯乙烷、1,1,1,2-四氯乙烷、1,1,1,2-四氯乙烷、1,1,1,2-三氯乙烷、三氯乙烯、1,2,3-三氯丙烷、氯乙烯、苯、氯苯、1,2-二氯苯、1,4-14 苯、乙苯、苯乙烯、甲苯、间二甲苯+剂二甲苯、邻二甲苯、硝基苯、苯胺、2-氯酚、苯并[a] 蒽、苯并[a] 克、苯并[b] 荧蒽、苯并[a] 克、苯并[a, h] 蒽、茚并[1,2,3-d] 芘、萘、石油烃(C10~C40)、二噁英类		/			
风险	/	甲苯、乙腈、N,N-二甲基甲酰胺	/			
固体废物	工业固废的种类、产生量、综	合利用及处置状况	固废外排量			
声文学	等效道	连续 A 声级				

评价标准

2.2.3.1. 环境质量标准

(1)环境空气质量标准

SO₂、NO₂、PM₁₀、PM_{2.5}、CO、O₃、苯并(a) 芘执行《环境空气质量标准》(GB3095-2012) 二级标准。氨、苯乙烯、丙酮、硫酸、氯气等执行《环境影响评价技术导则 大气环境》(HJ2.2-2018) 附录 D 中标准,非甲烷总烃参照执行《大气污染物综合排放标准详解》相关要求,臭气浓度参照《恶臭污染物排放标准》(GB14554-94)厂界标准值,二噁英参考日本环境厅中央环境审议会制定的环境标准,具体标准值详见下表。

		表 2.2	2-3 环境空	2气质量标准
污染因子	环境	质量标准(mg	/m ³)	
17水四 1	小时平均	日均	年均	3
SO_2	0.50	0.15	0.06	
NO_2	0.20	0.08	0.04	
PM_{10}	/	0.15	0.07	
TSP	/	0.3	0.2	
PM _{2.5}	/	0.075	0.035	《环境空气质量标准》(B3095-2012)
СО	10	4	/	(环境空气质量标准) 《环境空气质量标准》(B3095-2012) 《环境影响评价技术导则大气环境》(附录 I 其他污染物空气质量浓度参考限值
O ₃	0.2	0.16	/	
氟化物	0.02	0.007	/	
萨并(a)芘	/	2.5*10-6	1*10-6	
氨	0.2	/	/	
苯乙烯	0.01	/	/	
丙酮	0.8	/	/	
丙烯腈	0.05	/		5 '
二甲苯	0.2	/	-XM	
甲苯	0.2	/		↑《坏境影响评价技术导则天气坏境》(附录 L 甘仙沄边物空气质量浓度矣老限值
甲醇	3	1(/	,
硫化氢	0.01	ZYP*	/	
硫酸	0.3	4(1).1	/	
氯化氢	0.05 ú	0.015	/	
氯气	0.1	0.03	/	
非甲烷总烃	《祭	/	/	《大气污染物综合排放标准详解》
臭气浓度 .	\ <u>\</u>	20 (无量纲)	•	参照 GB14554-93 厂界标准值

说明人根据环发(2008)82号文中指出,在我国尚未制定二噁英类环境质量标准的前提下,参照日本年均允益标准(0.6pgTEQ/m³)评价,二噁英类小时、日均浓度标准按照《环境影响评价技术导则 大气环境》(HJ2.2-2018)中年均:日均:小时平均=1:2:6 折算系数折算。

0.6

日本环境厅中央环境审议会制定的环境标准

(2)地表水环境质量标准

根据《江苏省地表水(环境)功能区划(2021-2030)》(苏环办〔2022〕82号),长江 泰兴段执行《地表水环境质量标准》(GB3838-2002)II类标准,内河洋思港、芦坝港、胜利 中沟、翻身中沟执行IV类水标准,具体标准限值详见表 2.2-4。

表 2.2-4 地表水水质标准 单位: mg/L, pH 无量纲

	• •		•	1	·
序号	项目	单位	II类标准	IV类标准	标准来源
1	рН	/	6~9	6-9	
2	溶解氧	mg/L	≥6	≥3	
3	高锰酸盐指数	mg/L	≤4	≤10	
4	COD	mg/L	≤15	≤30	_
5	氨氮	mg/L	≤0.5	≤1.5	~
6	总磷	mg/L	≤0.1	≤0.3	表水环境质量 标准》 (GB3838-2002)
7	总氮	mg/L	≤0.5	≤1.5	LAT.
8	氟化物	mg/L	≤1.0	≤1.5	
9	氰化物	mg/L	≤0.05	≤0.2	
10	挥发酚	mg/L	≤0.002	≤0.01	, X, X,
11	石油类	mg/L	≤0.05	≤0.5	人 表水环境质量
12	LAS	mg/L	≤0.2	≤0.3	标准》
13	硫化物	mg/L	≤0.1	≤0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(GB3838-2002)
14	丙烯腈	mg/L	≤0.	1	
15	硫酸盐	mg/L	≤25	50	
16	氯化物	mg/L	≤25		
17	硝酸盐	mg/L	4	87	
18	苯乙烯	mg/L		<i>h</i> 2	
19	甲苯	mg/L	₩ 20.		
20	二甲苯	mg/L	½y ≤0.	5	
21	铁	mg/L	<u>√</u> <u>√</u> ≤0.	3	
22	钴	mg/L	≤1.	0	
23	镍	mg/L -X	<i>√y</i> ≤0.0)2	

(3)地下水环境质量标准 地下水按《地下水质量标准》(2017)进行分级评价,主要指标见表 2.2-5。 表 2.2-5 地水质量分级指标 单位: mg/L, pH 值除外

			··· · · · · ·	1	
污染物名称	I类人が	II类	III类	IV类	V类
pН	~\\\;>	6.5-8.5		5.5-6.5,8.5-9	<5.5,>9
氨氮	4 0.02	≤0.10	≤0.50	≤1.50	>1.50
硝酸盐	15≤2.0	≤5.0	≤20	≤30	>30
亚硝酸盐	≤0.01	≤0.10	≤1.00	≤4.80	>4.80
挥发性酚类	≤0.001	≤0.001	≤0.002	≤0.01	>0.01
氰化物	≤0.001	≤0.01	≤0.05	≤0.1	>0.1
·熊	≤0.001	≤0.001	≤0.01	≤0.05	>0.05
xix X	≤0.0001	≤0.0001	≤0.001	≤0.002	>0.002
谷 (六价)	≤0.005	≤0.01	≤0.05	≤0.1	>0.1
总硬度	≤150	≤300	≤450	≤650	>650
铅	≤0.005	≤0.005	≤0.01	≤0.1	>0.1
氟化物	≤1.0	≤1.0	≤1.0	≤2.0	>2.0
镉	≤0.0001	≤0.001	≤0.005	≤0.01	>0.01
铁	≤0.1	≤0.2	≤0.3	≤2.0	>2.0
锰	≤0.05	≤0.05	≤0.1	≤1.5	>1.5
溶解性总固体	≤300	≤500	≤1000	≤2000	>2000

耗氧量	≤1.0	≤2.0	≤3.0	≤10	>10
硫酸盐	≤50	≤150	≤250	≤350	>350
氯化物	≤50	≤150	≤250	≤350	>350
总大肠菌群				≤100	>100
(MPN/100mL)	≤3	≤3	≤3	≥100	/ 100
菌落总数 (CFU/mL)	≤100	≤100	≤100	≤1000	>1000
LAS	不得检出	≤0.1	≤0.3	≤0.3	>0.3
钴	≤0.005	≤0.005	≤0.05	≤0.10	>0.10
镍	≤0.002	≤0.002	≤0.02	≤0.10	>0,10
硫化物	≤0.005	≤0.01	≤0.02	≤0.10	>1 X
甲苯	≤0.5	≤140	≤700	≤1400	1400
二甲苯	≤0.5	≤100	≤500	≤1000	>1000
苯乙烯	≤0.5	≤2.0	≤20.0	≤40.0	>40.0

(4)声环境质量标准

根据《中国精细化工(泰兴)开发园区发展规划(2020-2030)》,拟建厂区及其周界声环境执行《声环境质量标准》(GB3096-2008)中3类标准,标准记见下表。

表 2.2-6 噪声标准值 单位 (A)

类别	昼间	夜间	标准来源
3 类	65	55	、

(5)土壤环境质量标准

评价区土壤执行《土壤环境质量标准 建设度 土壤污染风险管控标准》(GB36600-2018) 第二类用地标准及江苏省地方标准《建设度 土壤污染风险筛选值》(DB32/T4712-2024)中 第二类用地标准,具体值见表 2.2-7。

表 2.2-7 土壤 / 境质量标准值 单位: mg/kg, pH 除外

				1 124 6/ 6/	Par MAN		
 类别	序号		- 大 染物项目	筛选值	管制值		
尖加	万与			第二类	用地	你任不你	
	1		砷	60	140		
	2	KK-1	镉	65	172		
	3	A75	铬 (六价)	5.7	78		
	4	重金属	铜	18000	36000		
	NEL!		铅	800	2500	" I I-l-1	
	XXX			汞	38	82	《土壤环境质
-4	7		镍	900	2000	量标准 建设用地土壤污染	
基本	8			四氯化碳	2.8	36	用地工壌75架 风险管控标
	9		氯仿	0.9	10	准》	
KARA TANA	10		氯甲烷	37	120	(GB36600-20	
∕∕ ``	11	挥发性	1,1-二氯乙烷	9	100	18)	
- -	12	有机物	1,2-二氯乙烷	5	21		
	13	1月 47 L 1797 	1,1-二氯乙烯	66	200		
	14		顺-1,2-二氯乙烯	596	2000		
	15		反-1,2-二氯乙烯	54	163		
	16		二氯甲烷	616	2000		

				1		
	17		1,2-二氯丙烷	5	47	
	18		1,1,1,2-四氯乙烷	10	100	
	19		1,1,2,2-四氯乙烷	6.8	50	
	20		四氯乙烯	53	183	
	21		1,1,1-三氯乙烷	840	840	
	22		1,1,2-三氯乙烷	2.8	15	
	23		三氯乙烯	2.8	20	
	24		1,2,3-三氯丙烷	0.5	5	7.
	25		氯乙烯	0.43	4.3	1°.
	26		苯	4	40	
	27		氯苯	270	1000	ممد
	28		1,2-二氯苯	560	560	· (河湾
	29		1,4-二氯苯	20	200	
	30		乙苯	28	280(3)	
	31		苯乙烯	1290		
	32		甲苯	1200	200	
	33		间二甲苯+对二甲苯	570	570	
	34		邻二甲苯	640	640	
	35		硝基苯	AN	760	
	36		苯胺	266	663	
	37		2-氯酚	2256	4500	
	38		苯并[a]蒽 人	15	151	
-	39		苯并[a]芘	1.5	15	
-	40	半挥发性	苯并[b]荧 荩	15	151	
	41	- 有机物	苯并[k] 茶葱	151	1500	
-	42			1293	12900	
-	43		二 二 [a,h]蔥	1.5	15	
-	44		(1,2,3-cd]芘	15	121	
-	45	1	秦	70	700	
特征	46	石油烃类	石油烃 (C ₁₀ ~C ₄₀)	4500	9000	
因子	47	二噁英类	二噁英类(总毒性当量)	0.00004	0.0004	-
	1		钼	250	2130	
-		車利和		1.2	29	
-	3	人物物	总氟化物	2870	21700	
ŀ	2 3 4 1 8	*	1,2,3-三氯苯	40	141	
保护人	, KG		1,2,4-三氯苯	20	59	 江苏省地方
体健康	100	」 挥发性有	1,2,4-三甲基苯	106	587	上 在 《 建设用 ·
	7	机物	1,3,5-三甲基苯	83	456	土壤污染风
用地	8		二硫化碳	37	198	一般的未必 筛选值》
壌大染	9	1	氯乙烷	698	3570	(DB32/T47
冷 险筛	10			1460	10100	-2024)
`选值	11	-		1060	7190	
	12	半挥发性		1460	10100	
-	13	有机物		1100	7580	-
	14	-		1060	7190	1
	14		苯并(g,h,i)菲	1000	/ 190	

2.2.3.2. 排放标准

1、废气污染物排放标准

(1)中试基地集中式废气净化系统(RTO)进气浓度要求

根据设计,本次将工艺废气来源分为2个部分,拟接收的废气组分、污染物浓度及送风风 压要求如下表。如不满足,则需入驻企业自行进行预处理满足要求后方可接入。

表 2.2-8	集中式废气	气净化系统进气	ミ汚染物接 入	、要求

废气 类型	废气特点	来气浓度接收要求	风压要求	主管 编号	RTC 系统
中试工艺	风量小,污染物 浓度高;不含卤 素	有机废气 VOCs 浓度低于爆炸下 限的 25%	进入废气主管的压力 不低于 500 Pa	1#主義	1#RTO 系统
废气	风量小,污染物浓度高;含卤素	氯、氮等杂原子含量低于 1000mg/m³;有机废气 VOCs 浓度低于 爆炸下限的 25%	进入废气主管的压力; 不低于 500 Pa	#主管	2#RTO 系统

(2)废气污染物排放标准

①集中式废气净化系统(RTO 焚烧系统)污染物排放标准

总原则:应结合入驻企业类型,FQ-1排气筒排放的(大污染物排放标准优先执行行业标 (DB32/2/3X-2016) 准,如《化学工业挥发性有机物排放标准》 《制药工业大气污染物排放 《合成树脂工业污》划排放标准》(GB31572-2015,含 2024 年 标准》(DB32/4042-2021)、 修改单)等;无相关标准的执行《大气污染》综合排放标准》(DB32/4041-2021)限值。

说明: 当有不同排放标准的废气同时排放时,同类污染物执行对应标准中的最严限值。

②入驻企业自建废气净化系统有某物排放标准

气**冻**染物排放标准优先执行行业标准,无相关标准的执行江苏省地 ★标准》(DB32/4041-2021)限值,本次拟入驻的7个典型研发工

表 2.2-9 拟入驻中试项目对应的废气污染物排放标准一览表

		陈年沅州州州东北州
排气筒编号	典型研发工艺/功能区	版飞行荣彻执门 标准 (、
FQ-1	RTO 焚烧系统	《合成树脂工业污染物排放标准》(GB31572-2015,含 2036年修改单)、《大气污染物综合排放标准》(DB32/4041 362 1)
FQ-2	过程分析室	《大气污染物综合排放标准 》 (BB32/4041-2021)
FQ-3	危废库	《大气污染物综合排放标》(DB32/4041-2021)
FQ-4	[
FQ-5	污水站	《恶臭污染物排放标准》(GB14554-93) 大气污染物综合排放标准》(DB32/4041-2021)
FQ-6	贵金属催化剂中试项目	《大气污染物综合排放标准》(DB324x41-2021)、《恶臭污染物排放标准》(GB14554-93)
FQ-7	呋喃二甲酸及其衍生物聚酯类中试项目	《化学工业挥发性有机物排放标准》(DB32 3151-2016)、《合成树脂工业污染物排放标准》(GB31572-2015)
	聚醚醚酮(PEEK)中试项目	《合成树脂工业污染》排放标准》(GB31572-2015)(含 2024 年修改单)
优北 DTO 林	棕榈油基材料中试项目	《合成树脂工业》》,物排放标准》(GB31572-2015)(含 2024 年修改单)
依托 RTO 焚 烧系统	光学级 PMMA、改性 PMMA 树脂与板 材项目	《合成树脂 K业污染物排放标准》(GB31572-2015)(含 2024 年修改单)
(FQ-1)	生物基尼龙中试项目	《合成》指工业污染物排放标准》(GB31572-2015)(含 2024 年修改单) 《公》附脂工业污染物排放标准》(GB31572-2015)(含 2024 年修改单)
	特种高分子新材料中试项目	《台本树脂工业污染物排放标准》(GB31572-2015)(含 2024 年修改单)

表 2.2-10 大气污染物综合排放标准 (摘选)

		衣 2.2-10	人气污染物绿合排风标	性 人 铜 処 ノ		
序		污染物	最高允许排放浓度	最高允许排 放速率	监控	标准
号			mg/m ³	kg/h	位置	来源
		石棉纤维及粉尘	1.0 或者 1 根纤维/cm ³			
1	颗粒物	碳黑尘、染料尘	15	0.51	-	
		其他	20	1	-	2/17:
		燃烧(焚烧、氧化)装				XI NO
•	二氧	置、固定式内燃机、发	200	/		
2	化硫	动机制造测试工艺			_	(,,
		其他	200	1.4	X	>
	复复儿	燃烧(焚烧、氧化)装				
2	氮氧化	置、固定式内燃机、发	200	/	XXX	
3	物(以	动机制造测试工艺		الله الله الله الله الله الله الله الله	<i>1</i> /2,	
	NO ₂ 计)	其他	100	0.36 0.51 1 / 1.4		
4		非甲烷总烃*	60	4/3	车间	
5		苯	1	0.1	排气	
6		甲苯	10	0.2	筒出	《大气污
7		二甲苯	10	0.72	口或	染物综合
8		苯系物	25	1.6	生产	排放标
9		СО	1000	24	设施	准》 (DD22/4
10		氯化氢	3 1	0.18	排气	(DB32/4 041-2021)
11		氯气	- X 3	0.072	筒出	041-2021)
12		氟化物	√ ∀ 3	0.072	口	
13		氰化氢	1	0.05		
14		硫酸雾	5	1.1		
15		甲醛	5	0.1		
16	乙醛、上		20	0.036		
17		丙烯腈	5	0.3		
18		酚红	20	0.072		
19			50	1.8		
20		い 気甲烷	20	0.45		
21		三氯甲烷	20	0.45		
22	R. KIN	苯并〔a〕芘	0.0003	0.000009		
23	(2/4)2	二噁英类	0.1ng-TEQ/m ³	/		

	20	<u>~\\≯</u> \$				0.45	
	21	三氯甲烷		20		0.45	
	22	苯并〔a〕芘		0.0003	0	.000009	
	23	二四	惡英类	0.1ng-TEQ	m^3	/	
	- 人 注	非甲烷总烃污	染物控制设施总去除				率限值要求。
,	***\\		表 2.2-11 化学工	业挥发性有机的	物排放标准	(摘选)	
*) K13		最高允许排放浓度	与排气筒高度	医对应的最高分	心许排放速率	
3/-	序号	污染物	双问/U// JIF/从YN/又		(kg/h)	1	标准来源
称			mg/m^3	15m	20m	30m	
177	1	二氯甲烷	50	0.54	1.1	2.9	《化学工业挥发
	2	三氯甲烷	20	0.54	1.1	2.9	性有机物排放标
	3	氯乙烯	10	0.54	1.1	2.9	准》

4	苯 6		5.0	0.36	0.72	1.9	(DB32	/3151-20
5	甲苯	2	25	2.2	4.3	12	16	()
6	二甲苯	4	10	0.72	1.5	3.8		
7	苯乙烯 2		20	0.54	1.1	2.9		
8	甲醇 6		50	3.6	7.2	19		
9			10	1.3	2.5	6.7		
10	甲醛	1	10	0.18	0.36	1.0		
11	丙烯腈	5	5.0	0.18	0.36	1.0		-,40;
12	非甲烷总烃	8	30	7.2	14	38		A. W.
13	丙酮	۷	10	1.3	2.5	6.7		(X)
14	乙腈	3	30	1.1	2.2	5.6	بة ر	_ `
15	乙酸乙酯	5	50	1.1	2.2	5.6	~XX	
16	臭气浓度	1500	无量纲)	/	/	/ ^	***	
		表 2.2-1	2 合成树	脂工业污染物	物排放标准((摘选))	标准
序	>= >+ 14-		排放限值		エロムム	Let His Self Live		标准
号	污染物		mg/m ³		适用的合成			来源
1	非甲烷总	<u></u> 烃	60		rr + A			
2	颗粒物		20		所有合	文 707月盲		
3	苯乙烯		20	聚苯乙烯	树脂、森林	脂、不饱和聚酉		
4	丙烯腈		0.5		ABS †	对脂		
5	1,3-丁二;		1	ABS 树脂				
6	环氧氯丙		15	12	分 环氧树脂、氨基树脂			
7	酚类		15	酚醛树 光, 环氧树脂、聚碳酸酯树脂、聚醚醚酮 树脂			を 離離酮	
8	甲醛		15	- ※ 粉醛	树脂、氨基树	脂、聚甲醛树脂	E H	
9	乙醛		20	XXXX	热塑性聚			
10	甲苯二异氰	酸酯	14	· ·	聚氨酯	树脂		《合成
11	二苯基甲烷二异		X	聚氨酯树脂				树脂工
12	异佛尔酮二异	氰酸酯	.X1'	聚氨酯树脂				业污染
13	多亚甲基多苯基	异氰酸酯:	1		聚氨酯	树脂		物排放
14	氨	异氰酸酯 -	20	氨基树	脂、聚酰胺树	脂、聚酰亚胺树	材脂	标准》
15	氟化氢	(-)/-	5		氟树	脂		(GB31 572-201
16	氯化氢	卷!	20		有机硅	树脂		5)(含
17	二氧化	1	50	聚砜树	脂、聚醚砜树	脂、聚醚醚酮树	材脂	2024年
18	硫化氢		5		聚苯硫酮	迷树脂		修改
19	外 烯酸		10		丙烯酸	树脂		单)表5
20	烯酸甲酯		20		丙烯酸树脂			• •
21	万 丙烯酸丁酯 20			丙烯酸	树脂			
22/	甲基丙烯酸甲酯 50			丙烯酸	树脂			
×231	苯		2		聚甲醛	树脂		
22 23 23 24	甲苯		8	聚苯乙烯枫	が が脂、ABS 树 が脂、聚	脂、环氧树脂、 砜树脂	有机硅	
25			50	:	聚苯乙烯树脂			
26	氯苯类		20			聚苯硫醚树脂		
27	二氯甲烷		50	713	聚碳酸酯			
20	四年11時			Т				

50

聚对苯二甲酸丁二醇酯树脂

28

四氢呋喃

当入驻项目废气执行《合成树脂工业污染物排放标准》(GB31572-2015)(含 2024 年修 改单)且依托基地 RTO 焚烧系统处置时,FQ-1 排气筒中的二氧化硫、氮氧化物、二噁英类应 执行 GB31572-2015 中表 6 限值。

表 2.2-13 焚烧设施 SO2、NOx和二噁英类排放限值 单位: mg/m3

	· · · · · · · · · · · · · · · · · · ·		
序号	污染物	特别排放限值	标准来源
1	二氧化硫	50	《合成树脂工业污染》
2	氮氧化物	100	排放标准》
3	二噁英类	$0.1 \text{ ng-TEQ}/\text{m}^3$	(GB31572-201) (含
燃烧含卤素有机质	2024年修改单)表 6		

③恶臭污染物排放标准

氨、硫化氢等恶臭气体执行《恶臭污染物排放标准》

表 2.2-14 恶臭污染物排放标准 (摘选)

					VA/A	
污染物	最高允许排放浓	排气筒	最高允许排放速	无组织排放出	益控 次 设值	标准来源
77条70	度(mg/Nm³)	(m)	率 (kg/h)	监控点	变 mg/m³	小在 <i>小</i> 尔
氨	/	15	4.9	4	1.5	
安(/	25	14		1.3	
硫化氢	,	15	0.33		0.06	
圳化名	/	25	0.90	A PART OF THE	0.06	《恶臭污染物排放
苯乙烯	/	15	6.5	界标准值	5.0	标准》
本口加	/	25	18	\sim	3.0	(GB14554-93)
臭气浓度(无	,	15	2000		20	
量纲)	/	25	800°		20	

④中试基地内部及厂界废气排放 分准

结合入驻企业类型,基地内都及一界大气污染物排放标准优先执行行业标准,无相关标准 染物综合排放标准》(DB32/4041-2021)限值。 的执行江苏省地方标准《大

表 2.2-15 厂区内 VOCs 无组织排放限值

污染物	监控点 队	限值含义	无组织排放 监控位置	标准来源		
非甲烷总	W/K	监控点处 1h 平均浓度值	在厂房外设置监	《大气污染物综合排放标准》		
烃	20	监控点处任意一次浓度值	控点	(DB32/4041-2021)		
表 2.2-16 单位边界大气污染物排放监控浓度限值(摘选)						

	_È .Z.X	污染物		监控浓度限值	监控	标准来源
_	序是)	mg/m ³		位置	/小1出 <i>个/</i> ///
ζÝ	% ,	石棉纤维及粉尘		生产装置不得有明显的无组织排放		
\ \	1	颗粒物	碳黑尘、染料尘	肉眼不可见		《大气污染物综合排
_			其他	0.5	车间排气筒出	放标准》
	2	二氧化硫		0.4	口或生产设施	(DB32/4041-2021)
	3	氮氧化物		0.12	排气筒出口	(DD32/4041-2021)
	4	非甲烷总烃		4		

5	苯	0.1
6	甲苯	0.2
7	二甲苯	0.2
8	CO	10
9	氯化氢	0.05
10	氯气	0.1
11	硫酸雾	0.3
12	丙烯腈	0.15
13	甲醇	1
14	氟化物	0.02

表	2.2-17 企业边界大气	亏染物浓度限值 单位:	mg/m ³ XX
序号	污染物	特别排放限值	水 准来源
1	颗粒物	1.0	一
2	氯化氢	0.2	一样成树脂工业污染物 排放标准》
3	苯	0.4	· (GB31572-2015) (含
4	甲苯	0.8	2024年修改单)表 9
5	非甲烷总烃	4.0	

⑤过程分析室、危废库及污水站废气排放标准

过程分析室、危废库及污水站排放的废气执行《大气污染物综合排放标准》(DB32/4041-2021)限值;污水站排放的氨、人之氢、臭气浓度执行《恶臭污染物排放标准》(GB14554-93)二级标准。

⑥食堂油烟排放标准

食堂油烟参照执行《饮食业 烟排放标准》(GB18483-2001)大型排放标准,如下:

表 2.2-18 饮食业油烟排放标准

	规模	最富允许排	净化设施最低	标准来源
类型	基准灶头数	放浓度	去除率	你任 <i>本识</i>
大型	≥6	2.0mg/m^3	85%	《饮食业油烟排放标准》(GB18483-2001)

⑦施工期扬华排放标准

施工期发生执行江苏省地方标准《施工场地扬尘排放标准》(DB32/4437-2022),详见下

表 2.2-19 施工场地扬尘排放标准 单位: μg/m³

必 监测项目	浓度限值
TSPa	500
PM_{10}^b	80

2、废水污染物排放标准

(1)中试基地集中式废水处理站接收标准

基于入驻项目的不确定性,结合开发区工业污水处理厂接管指标种类,拟对中试基地配套 的集中式废水处理站提出接收废水污染物要求,如不满足,则需入驻企业自行进行预处理后方 可接入污水站。(说明:如涉及第一类废水污染物,涉重企业需自行对该部分废水进行预处理 达标后回用或者直接作为危险废物收集处置,严禁外排)

高浓废水,依据污水站净化工艺,各股废水接收限值如下:

表 2.2-20	一般废水接收限值
1X 2.2-2U	NX 1/2 / 12 T4 X P12 1 H

	表 2.2-20 一	般废水接收限值	(1/1)
 污染物	接收限值(mg/L)	污染物	接收限 数 (mg/L)
pH 值(无量纲)	5~10	COD	900
 氨氮	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	石油类	<u>≤25</u>
挥发酚	≤3	苯胺类	≤ 8
氰化物	≤0.5	LAS	≤25
全盐量	≤5000	氟化物	≤10
	表 2.2-21 高	盐废水接收限值	
污染物	接收限值(mg/L)	沙染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤900
	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	石油类	≤25
挥发酚	≤3 , 	苯胺类	≤8
氰化物	≤0.5	LAS	≤25
全盐量	≤3 50 € 0	氟化物	≤10
	2.2-22 含	油废水接收限值	
污染物	接收稳值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤900
	≤30	总氮	≤50
总磷	₹ ≤7	SS	≤300
动植物油	≤1000	石油类	≤1000
挥发酸	≤3	苯胺类	≤8
10000000000000000000000000000000000000	≤0.5	LAS	≤25
	≤5000	氟化物	≤10
	表 2.2-23 含	氟废水接收限值	
污染物	接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲) 氨氮	7~10	COD	≤900
氨氮	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	石油类	≤25
挥发酚	≤3	苯胺类	≤8
氰化物	≤0.5	LAS	≤25
全盐量	≤5000	氟化物	≤30

	7.4.1	11/24/4 1421 P4111 PA	
污染物	接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤5000
氨氮	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	石油类	≤25
挥发酚	≤30	苯胺类	≤30
氰化物	≤3	LAS	≤25 21 (3)
全盐量	≤5000	氟化物	≤10

表 2.2-24 高浓废水接收限值

说明:①入驻项目废水预处理装置以其获批的环评文件及批复或论证报告为准;②如入驻 企业废水不满足接收限值要求,需自行增设废水预处理装置,满足要求后方可汇入水收集系 统。

(2)开发区工业污水处理厂接管标准

本项目污水分类收集、分质处理,根据《中国精细化工(泰兴)开发。区发展规划(2020-2030)环境影响报告书》及《泰兴经济开发区 5 万吨/日工业污水处理、程项目环境影响报告书》要求,本项目预处理达标的废水全部接入开发区工业污水处理,进行集中处理。

基地污水站排口污染物排放应满足泰兴经济开发 业污水处理厂接管标准,根据开发区工业污水处理厂环评及批复的接管限值要求:

①特征污染因子指标应结合企业具体工产排污特点,需符合其适用的所属行业的相关水污染物排放标准,如无适用的行业标文,则需满足《石油化学工业污染物排放标准》(GB31571-2015)表 3 中标准;

②对于涉及第一类废水污染物入驻项目,应在生产车间或设施废水排放口处理达行业或其他适用的排放标准后回用或发展作为危险废物收集处置,严禁外排。

发 2.2-25 工	业污水处理厂废水接	管标准
污染的	接管标准(mg/L)	标准来源
pH 值(无量纲)	6~9	
(稀释倍数)	≤500	
COD	≤500	
BOD ₅	≤150	
SS	≤100	
多 類	≤30	
总氮	≤50	污水处理厂环评及批复规定限值
总磷	≤3.0	
磷酸盐	≤0.5	
动植物油	≤10	
挥发酚	≤0.5	
苯胺类	≤5.0	
总氰化物	≤0.5	

64

硫酸盐 ≤2000	
氯化物 ≤4000	
溶解性总固体 (TDS) ≤10000	
阴离子表面活性剂(LAS) ≤20	
氟化物 ≤15.0 《合成树脂工业污染物排放杨	准》
可吸附有机卤化物(AOX) ≤5.0 (GB31572-2015, 含 2024 年修	改单)
甲苯 0.1 表 2	!\!\!

(3)开发区工业污水处理厂外排标准

依据开发区工业污水处理厂环评报告及批复,其尾水主要指标 COD、氨氮、总磷热壳《地表水环境质量标准》(GB3838-2002)中IV类标准,其他污染因子执行《城镇污火处理厂污染物排放标准》(GB18918-2002)一级 A 标准,工业污水处理厂排污口废水流、友联中沟,通过友联中沟进入滨江中沟,最终通过洋思港排入长江。

表 2.2-26 污水处理厂尾水外排标准

	1、2·2-20 17小人(主) /七小ノ门 11/小川	* K '
污染物名称	工业污水处理厂尾水排放标准 (mg/L)	标准来源
COD	30	//
氨氮	1.5	- 《地表水环境质量标准》 - (GB3838-2002)中IV类标准
总磷	0.3	(GB3636-2002) 「TV关标框
pH 值(无量纲)	6~9 /y	
SS	10	
总氮	1	
石油类		
动植物油	√ X ¹i	
LAS	0.5	一《城镇污水处理厂污染物排放一标准》(GB1818-2002)中一级
甲苯	0.1	- Mac (GB1818-2002) 中一级 - A 标准
挥发酚	0.5	A 你推
AOX (以Cl计)	1.0	
氟化物	/ / /	
盐分	/	
氯化物 人物	/	

(4)雨水排口排放标准

表 2.2-27 雨水排放标准 单位: mg/L

项目	污染物名称	浓度限值	标准来源		
排放标准	COD	30			
	NH ₃ -N	1.5	泰经管〔2020〕144 号		
	TP	0.3			
	特征污染物	不得检出			

3、噪声排放标准

施工期执行《建筑施工场界环境噪声排放标准》(GB12523-2011),其中夜间噪声最大声级超过限值的幅度不得高于 15dB(A);运营期厂界噪声应执行《工业企业厂界环境噪声排放标准》(GB12348-2008)中 3 类标准,具体如下。

表 2.2-28 建筑施工场界环境噪声排放标准 单	位: dB	(A)
---------------------------	-------	-----

 类别	标准值		标准来源		
	昼间	夜间	小在不 <i>协</i>		
厂界噪声	70	55	《建筑施工场界环境噪声排放标准》(GB12523-2014)		
	表 2.2-29	L业企业厂界	环境噪声排放标准 单位:dB(A)		
米切	标准	隹值	标准来源		
类别	昼间	夜间	***		
3 类	65	55	《工业企业厂界环境噪声排放标准》(348-2008)		

4、固体废物贮存标准

项目产生的一般工业固体废物贮存执行《一般工业固体废物贮存》填埋污染控制标准》(GB18599-2020),危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2023)、《危险废物收集 贮存 运输技术规范》(HJ2025-2012)及《证券省固体废物全过程环境监管工作意见》(苏环办〔2024〕16号)中相关规定要求进行企险废物的包装、贮存设施的选址、设计、运行、安全防护、监测和关闭等要求进行合理的贮存。危废标识按照《危险废物识别标志设置技术规范》(HJ 1276-2022)中相关要求认行。

2.3. 评价工作等级及评价重点

2.3.1. 评价工作等级

2.3.1.1. 大气

依据《环境影响评价技术》则-大气环境》(HJ2.2-2018)中 5.3 节工作等级的确定方法,结合项目工程分析结果。光锋正常排放的主要污染物及排放参数,采用附录 A 推荐模型中的 AERSCREEN 模式计算项目污染源的最大环境影响,然后按评价工作分级判据进行分级。

(1)P_{max} 及 D\nox的确定

依据《境影响评价技术导则 大气环境》(HJ2.2-2008)中最大地面浓度占标率 Pi 定义

 $P_i=C_i/C_{oi}\times 100\%$

式中: Pi—第 i 个污染物的最大地面浓度占标率, %

 C_i —采用估算模式计算出的第 i 个污染物的最大地面浓度, mg/m^3 ;

C_{oi}—环境空气质量标准,mg/m³,一般取《环境空气质量标准》 (GB3095-2012)中1 小时平均取样时间的二级标准的浓度限值,对仅有8h平均质量浓度限值、日平均质量浓度限 值或年平均质量浓度限值的,可分别按 2 倍、3 倍、6 倍折算为 lh 平均质量浓度限值。对该标 准中未包含的污染物,可参照该导则附录D或者其他相关标准。

(2)评价等级判别表

评价等级按下表的分级判据进行划分。

表 2.3-1	评价等级判别表
- V	* V '4 '70' / 4/44' V \

	N///>
评价工作等级	评价工作分级判据
一级评价	Pmax≥10%
二级评价	1%≤Pmax<10%
三级评价	Pmax<1%

(3)估算预测方案

首先定义项目所在地的基本气象参数和地表特征参数,供后续的 AELEN 计算内核 5选计算。 (4)估算模型参数 估算模式所用参数见表: 表 2.3-2 估算模型参数 的筛选计算。

	化 2.3-2	8X 9X
	参数	取值
城市农村/选项	城市/农村 从 3	城市
规印私们/起坝	人口数(城市人口	城市 119万人 39.10℃ -11.3℃ 城市 潮湿 是
最	高环境温度	39.10°C
最	低环境温度	-11.3°C
土	地利用类型	城市
X.	域湿度条件	潮湿
是否考虑地形	4 考虑地形	是
走百	(m)	90
	考虑岸线熏烟	
是否考虑岸线熏烟	岸线距离/km	/
	岸线方向/º	/

(5)预测结果及评价等级确定

目建成后的废气污染源强,利用大气导则中的估算模式进行计算,结果见下表。

表 2.3-3 项目 Pmax 和 D10% 预测和计算结果一览表

*N	污染源	评价因子	评价标准	Cmax	Pmax	D _{10%}	等级
	77朱/你	N N D 1	μg/m³	μg/m³	%	m	判定
74,3							
`							
→ \n \n	FO 1						/17
有组织	FQ-1						一级

	FQ-2				三级
Ī	FQ-3				以级
	FQ-4			٠5.	三级
	FQ-5				二级
	FQ-6		N. T. MIRE		一级
	FQ-7	Α,			二级
f组织	2#中试楼	-4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7 -4.7			二级
	2#中试楼				一级
-	4#中试楼				二级
	5#中试楼				二级

	二级
公扣 \/ 忙 宁	— <i>Б</i> П. — Д П.
过程分析室	二级
危废库	少级
污水站	一级

根据导则规定,同一项目有多个污染源时,应按各污染源分别确定评价级,并取等级最高者作为本项目的评价等级,故本项目大气评价等级为一级。

2.3.1.2. 地表水

项目废水经预处理达接管标准后,通过园区污水管网纳金兴经济开发区工业污水处理厂进行集中处理。因此,根据《环境影响评价导则 地表水境》(HJ2.3-2018)规定,项目废水排放为间接排放,水环境评价工作等级定为三级水,详见表 2.3-4。

表 2.3-4 地表水分价等级判断表

10 = 10 1 1 300 3 10 10 10 10 10 10 10 10 10 10 10 10 10				
- 3.7%	判定依据			
排放主义	废水排放量 Q/(m³/d);			
141-11X	水污染物当量数 W/(量纲一)			
東洋 放	Q≥20000 或 W≥600000			
全 直接排放	其他			
-大 直接排放	Q<200 且 W<6000			
间接排放	/			
	排放方 次 排放 直接排放 直接排放			

2.3.1.3. 地下水

(1)建设项目分

根据《环境》响评价技术导则 地下水环境》(HJ610-2016),本项目属于附录 A 中"V 社会事业与股企业"中的"164、研发基地"中的"含医药、化工类等专业中试内容的",属于III类建设项格

表 2.3-5 地下水环境影响评价行业分类表

环评类别	 报告书	报告表	地下水环境影响评价项目类别		
个 行业类别	1区二寸	拟古衣	报告书	报告表	
164、研发基地	含医药、化工类等专业中 试内容的	其他	Ⅲ类	IV类	

(2)III类建设项目工作等级划分

项目所在区域地下水潜水层不开采,不涉及地下水集中式饮用水源保护区及其补给径流区,本项目可能影响的潜水层与下伏第I承压含水层之间无直接水利联系,因此建设项目周围地下水环境敏感程度为不敏感。根据《环境影响评价技术导则 地下水环境》(HJ610-2016),III类建设项目地下水环境影响评价工作等级划分情况见表 2.3-6,经判定地下水评价等级为三级。

表 2.3-6 地下水环境影响评价工作等级划分判据一览表

项目类别 环境敏感程度	I类项目	II类项目	Ⅲ类项目
敏感	_	_	=('\)
	_		X
不敏感		111	*/^=

2.3.1.4. 噪声

本项目厂址位于《声环境质量标准》(GB3096-2008)中的 3 类区域 项目营运期的噪声声级增加很小(<3dB(A))且受影响区内人口增加不大;根据《环域 响评价技术导则 声环境》(HJ2.4-2021)中规定,确定本项目声环境影响评价工作 2000 定为三级。

2.3.1.5. 土壤

本项目属于污染影响型项目,为化工中试基地,发光照《环境影响评价技术导则土壤环境(试行)》(HJ 964-2018)附录 A,属于I类项目、拟建项目永久占地 108.1 亩(约 7.2hm²),属于中型,拟建场地位于泰兴经济开发区内、为边土壤环境不敏感。

根据土壤环境影响评价项目类别人地规模与敏感程度划分工作等级,如下表,最终判定本项目土壤评价等级为二级。

表 2.3. 不 污染影响型评价工作等级划分表

占地规模		()()			II类			III类	
评价等级	7	W/Y							
敏感程度	1/4	中	小	大	中	小	大	中	小
敏感	多级	一级	一级	一好	一级	一好	二级	三级	二岁
				一级	— <i>-</i> //	一次	— <i>-</i> //		<i>-</i> X
蛟敏感 🍌 🗸	了一级	一级	二级	二级	二级	三级	三级	三级	-
不敏感	一级	二级	二级	二级	三级	三级	三级	-	-

注: "-"表示以不开展土壤环境影响评价工作。

2.3.1.6 生态

本项目占地约 108.1 亩(约 0.072km²),位于泰兴经济开发区内,属于中试基地,对照《环境影响评价技术导则生态影响》(HJ 19-2022),本项目属于"位于已批准规划环评的产业园区内且符合规划环评要求、不涉及生态敏感区的污染影响类建设项目",故本次无需进行等级判定,可直接进行生态影响简单分析。

因此, 本项目仅对生态影响开展简单分析。

2.3.1.7. 风险

根据《建设项目环境风险评价技术导则》(HJ169-2018),本项目风险评价等级判断情况如下:

(1)危险物质及工艺系统危险性(P)分级

①危险物质与临界量比值(O)

计算所涉及的每种危险物质在厂界内的最大存在总量与其对应临界量的比值 Q。当只不及一种危险物质时,计算该物质的总量与其临界比值,即为 Q;当存在多种危险物质时则接下式计算物质总量与其临界比值(Q):

$$Q = \frac{q_1}{Q_1} + \frac{q_2}{Q_2} + \cdots + \frac{q_n}{Q_n}$$

式中: q1, q2..., qn—每种危险物质的最大存在总量, t。

Q1, Q2...Qn—每种危险物质的临界量, t。

当 Q<1 时,该项目环境风险潜势为I。

当 Q≥1 时,将 Q 值划分为: (1) 1≤Q<1(2) 10≤Q<100; (3) Q≥100。

根据拟建项目工程分析可知,本项目所涉及**的**危险物质主要为丙酮、N,N-二甲基甲酰胺、甲基丙烯酸甲酯、丙烯酸甲酯、氨水、乙二烷、甲醇、盐酸、硫酸、硝酸、甲苯、氯化氢、溴化氢、环己酮、乙腈、乙酸乙酯、异丙醇、危险库里的废液等,按照 HJ 169-2018 附录 B 和附录 C 定量计算 Q 值。

表 2.3 交 突发环境事件风险物质及临界量

危险物质	表入存在量 t	临界量 t	Q值
	JW/X		
	W-1		
	1779		
- 52.15°			
Ø/1,			

合计		

经上表计算,中试基地突发环境风险物质实际贮存量与临界量比值 Q=9.901,位于 1≤Q<10 范围内。

②行业及生产工艺(M)

分析项目所属行业及生产特点评估生产工艺情况。具有多套工艺单元的项目,对每套生产工艺分别评分并求和。将 M 划分为(1)M>20; (2)10<M \leq 20; (3)5<M \leq 10; (4)M=5,分别以 M1、M2、M3 和 M4 表示。

表 2.3-9 行业及生产工艺(M)

	70.	
行业	评估依据	分值
石化、化工、医药、 轻工、化纤、有色	涉及光气及光气化工艺、电解工艺(氯碱)、氯化工**,硝化工艺、合成氨工艺、裂解(裂化)工艺、氟化工艺、加氢工**,重氮化工艺、氧化工艺、过氧化工艺、胺基化工艺、磺化工艺、************************************	10/套
冶炼等	无机酸制酸工艺、大艺艺	5/套
	其他高温或高压、且涉及易燃易爆等物质的工艺过程 a、危险物质贮存罐	5/套(罐区)
管道、港口/码头	涉及危险物质管 添 新项目、港口/码头等	10
石油天然气	石油、天然气、页岩气开采 (本)	10
其他	涉及危险物质使用、贮存的项目	5

a 高温指工艺温度≥300℃,高压指压力容器的设计压力(P)≥10.0 MPa;

由于中试基地行业类型大工程和技术研究和试验发展(M7320)",故本次参照上表中的"石化、化工、医药、轻工化纤、有色冶炼等"行业进行主要工艺评估,具体如下:

表 2.3-10 本项目所属行业及生产工艺(M)

序号	工艺	数量	分值
1	加氢工艺	1 套	10
2	氧化工艺	1 套	10
3 PA	聚合工艺	12 套	120
4.75	涉及危险物质使用、贮存的项目	/	5
	/	/	145

本企业涉及聚合工艺及危险物质使用、贮存,生产工艺过程评估分值 145 分,即为 M1。

③危险物质及工艺系统危险性(P)分级

根据危险物质数量与临界量比值(Q)和行业及生产工艺(M)确定危险物质及工艺系统危险性(P)等级。

b 长输管道运输项目应按站场、管线**人**段进行评价。

表 2.3-11 危险物质及工艺系统危险性等级判断 (P)

<u>·</u>	. , _, _ , _ , _ ,	12 4	1	
危险物质数量与临界量	行业及生产工艺 (M)			
上值(Q)	M1	M2	M3	M4
Q≥100	P1	P1	P2	P3
10≤Q<100	P1	P2	Р3	P4
1≤Q<10	P2	Р3	P4	P4

根据上表,危险物质及工艺系统危险性等级判定为P2。

(2)环境敏感程度(E)的分级确定

①大气环境

根据 2.4.2 章节,本项目所在区域周边 5km 范围内居住区、医疗卫生、文化发育、科研、行政办公等机构人口总数大于 5 万人,大气环境敏感程度为 E1 (环境高度 区)。

表 2.3-12 大气环境敏感程度分级

分级	大气环境敏感性
E1	周边 5km 范围内居住区、医疗卫生、文化教育、科研、行文办公等机构人口总数大于 5 万人,或其他需要特殊保护区域;或周边 500m 范围内人口或 大于 1000 人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数大于 人。
E2	周边 5km 范围内居住区、医疗卫生、文化教育、
E3	周边 5km 范围内居住区、医疗卫生、教育、科研、行政办公等机构人口总数小于 1 万人;或周边 500m 范围内人口总数小于 300人;油气、化学品输送管线管段周边 200m 范围内,每千米管段人口数小于 100人。

②地表水环境

根据 HJ169-2018 附录 D.2: 被护事故情况下危险物质泄漏到水体的排放点受纳地表水体,确定地表水功能敏感性,结合水场勘察,距离厂区最近的水体为北侧的芦坝港(隔锦江路,约70m),其水域环境功能为火类。经对照下表,地表水功能敏感性分级为 F3。

表 2.3-13 地表水功能敏感性分级

分级	地表水环境敏感特征
	放放点进入地表水水域环境功能为Ⅱ类及以上,或海水水质分类第一类;或以发生事故时, 之险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内跨国界 的
较敏和62	排放点进入地表水水域环境功能为III类,或海水水质分类第二类;或以发生事故时,危险物质泄漏到水体的排放点算起,排放进入受纳河流最大流速时,24h流经范围内跨省界的
*不够感 F3	上述地区之外的其他地区

发生事故时, 危险物质泄漏到内陆水体的排放点下游(顺水流向: 厂区-芦坝港-长江) 10km 范围内, 有天星洲重要湿地。经对照下表,环境敏感目标分级为 S1。

表 2.3-14 环境敏感目标分级

	1 20 4/10 H 14-74 4/2
分级	环境敏感目标
S1	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10km 范围内、近岸海域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体:集中式地表水饮用水水源保护区(包括一级保护区、二级保护区及准保护区);农村及分布式饮用水水源保护区;自然保护区;重要湿地;珍稀濒危野生动植物天然集中分布区;重要水生生物的自然产卵场及索饵场、越冬场和洄游通道;世界文化和自然遗产地;红树林、珊瑚礁等滨海湿地生态系统;珍稀、濒危海洋生物的天然集中分布区;海洋特别保护区;海上自然保护区;盐场保护厂海水浴场;海洋自然历史遗迹;风景名胜区;或其他特殊重要保护区域
S2	发生事故时,危险物质泄漏到内陆水体的排放点下游(顺水流向)10km 范围内、近岸流域一个潮周期水质点可能达到的最大水平距离的两倍范围内,有如下一类或多类环境风险受体的:水产养殖区;天然渔场;森林公园;地质公园;海滨风景游览区;具有重要经济价值的方洋生物生存区域
S3	排放点下游(顺水流向)10km 范围、近岸海域一个潮周期水质点可能达到 发 壳大水平距离的两倍范围内无上述类型1和类型2包括的敏感保护目标

根据表 2.3-15, 地表水环境敏感程度分级为 E2 (环境中度敏感

表 2.3-15 地表水环境敏感程度分级

	• • • • • • • • • • • • • • • • • • • •	· · · > = · - · - · - · · · · · · · · · · · · ·	
环境敏感目标		地表水功能敏感性	
小児蚁芯目你	F1	F2 (F3
S1	E1	The state of the s	E2
S2	E1	TEX.	E3
S3	E1	E2	E3

③地下水环境

根据本项目岩土工程勘察报告,项目区域水包气带岩土的渗透性能属于 D2,且周边无地下水敏感保护目标(属于 G3),详述 2.3-16~表 2.3-17。

表 2.3/46 地下水功能敏感性分区

	7 1/
分级	地下水环境敏感特征
	集中式饮用水水源(包括)建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区;除集中式饮用水水源等外的国家或地方政府设定的与地下水环境相关的其他保护区,如热水、矿
敏感 G1	
	泉水、温泉等特殊地下水资源保护区
	集中式饮用水水源(包括已建成的在用、备用、应急水源,在建和规划的饮用水水源)准保护区以外的补纸水流区;未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区;分布式
较敏感	以外的补纸流区,未划定准保护区的集中式饮用水水源,其保护区以外的补给径流区,分布式
G2	饮用水水源地;特殊地下水资源(如热水、矿泉水、温泉等)保护区以外的分布区等其他未列入
	上述《惠分级的环境敏感区 a

a"环****感区"是指《建设项目环境影响评价分类管理名录》中所界定的涉及地下水的环境敏感区。

	<u>;-\>'</u>	表 2.3-17 包气带防污性能分级
*	分级	包气带岩土的渗透性能
?	D3	Mb≥1.0m,K≤1.0×10-6cm/s,且分布连续、稳定
	D2	0.5m≤Mb<1.0m,K≤1.0×10 ⁻⁶ cm/s,且分布连续、稳定; Mb≥1.0m,1.0×10 ⁻⁶ cm/s <k≤1.0×10<sup>-4cm/s,且分布连续、稳定</k≤1.0×10<sup>
	D1	岩(土)层不满足上述"D2"和"D3"条件

Mb: 岩土层单层厚度。K: 渗透系数。

对照表 2.3-18, 本项目地下水环境敏感程度为 E3 (环境低度敏感区)。

表 2.3-18	地下水环境敏感程度分级
10 4.5-10	

—————————————————————————————————————	地下水功能敏感性						
عالمار الأهاران م	G1	G2	G3				
D1	E1	E1	E2				
D2	E1	E2	E3				
D3	E2	E3	E3				

综上所述,本项目大气环境敏感程度为 E1、地表水环境敏感程度为 E2、地下水环境敏度程度为 E3。

(3)环境风险潜势判定

建设项目环境风险潜势划分为I、II、III、IV、IV+级。根据建设项目涉及的协质和工艺系统的危险性及其所在地的环境敏感程度,结合事故情形下环境影响途径,对立设项目潜在环境危害程度进行概化分析,确定环境风险潜势。

表 2.3-19 建设项目环境风险潜势确定情况

- 环境敏感程度(E)		危险物质及工艺系	系统危险性 (P)	
小児	极高危害(P1)	高度危害(P2)	(P3)	轻度危害(P4)
		一、大气	\$)-	
环境高度敏感区(E1)	IV^+	IV W	III	III
环境中度敏感区(E2)	IV	III.	III	II
环境低度敏感区(E3)	III	/ / III/	II	I
		二、金米		
环境高度敏感区(E1)	IV^+	IV.	III	III
环境中度敏感区(E2)	IV X	Ш	III	II
环境低度敏感区(E3)	III (4)	III	II	I
	, VI	三、地下水		
环境高度敏感区(E1)	×1′	IV	III	III
环境中度敏感区(E2)	-4 vV	III	III	II
环境低度敏感区(E3)	W. W. III	III	II	I
	1.77			

注, IV+为极高环境风险。

本项目危险物质。工艺系统危险性等级判定为 P2,大气环境敏感程度为 E1、地表水环境敏感程度为 E2、地下水环境敏感程度为 E3,对照上表判断:本项目大气环境风险潜势等级为 IV、地表水及境风险潜势等级为III、地下水环境风险等级为III,本项目环境风险潜势综合等级为IV。

4)评价工作等级划分

对照《建设项目环境风险评价技术导则》(HJ169-2018)评价工作等级划分表: 本项目大气环境风险潜势等级为IV,大气环境风险评价工作等级为一级;

地表水环境风险潜势等级为III, 地表水环境风险评价工作等级为二级;

地下水环境风险潜势等级为III,地下水环境风险评价工作等级为二级。

表 2.3-20 评价工作等级划分

环境风险潜势	IV、IV+	III	II	Ι
评价工作等级	一 (大气)	二(地表水、地下水)	111	简单分析 a

a 是相对于详细评价工作内容而言,在描述危险物质、环境影响途径、环境危害后果、风险防范措施等方面 给出定性的说明。见附录 A。

2.3.2. 评价重点

根据本项目的环境影响特征和项目所处区域的环境现状情况,结合当前环保管理的有关。 确定本次评价重点如下: (1)工程分析 求,确定本次评价重点如下:

在做好工程分析的基础上, 梳理拟建项目运行过程中各类污染物的排放 放量,为影响评价打好基础,为搞好污染防治提供依据。同时还要搞好 的计算,科学合理地确定工程的排放总量。

(2)污染防治措施评价及对策建议

从经济、技术、环境三个方面,对项目的污染防治措施进入]对策建议。 步的对策建议。

(3)环境影响评价

在工程分析的基础上,重点预测评价证 境空气的影响,保证预测结果的可靠性。

(4)环境风险评价

按照风险导则的有关技术要求 项目适用的事故防范措施。

2.4. 评价范围及环境敏感区

2.4.1. 评价范围

下表。

女特点及当地气象条件、自然环境状况确定各环境要素评价范围见

评价范围 表 2.4-1

评价内依		评价范围						
大公司		以厂址为中心,厂界外延 2.5km 的矩形区域						
- 地表水		开发区工业污水处理厂尾水排放口上游 2km 至下游 3km						
地下水		以厂址为中心,≤6km²范围						
♥ 声		项目厂界外 200m 范围						
土壤		项目厂区及外延 0.2km 范围						
	大气	以项目风险源为中心,项目边界外 5km 范围						
风险评价	地表水	开发区工业污水处理厂尾水排放口上游 2km 至下游 3km						
	地下水	以厂址为中心,≤6km²范围						

2.4.2. 环境保护目标

本项目环境重点保护对象列于表 2.4-2 和表 2.4-3,保护目标分布情况见图 2.4-1。

表 2.4-2 拟建项目大气环境保护目标一览表

序号	敏感目标名称	坐标	(0)	保护对象	伊 拉由家 △	X 接力能区	相对厂址	相对厂址距离
厅 与	蚁 恐日你石你	东经	北纬	一	休护内名	环境功能区	方位	(m)
1	新星村	119.960132	32.087088	居住区,约 700户(2100人)		大气环境二	东南	约 1900
2	崇福村	119.973629	32.088011	居住区,约 1150户(2344人)	128) 人气环境一 - 类区	东南	约 2600
3	翻身村	119.977802	32.123512	居住区,约 375 户(1125 人)	人人群	天区	东北	约 2800

表 2.4-3 拟建项目周边水环境、声环境、土壤环境及大环境主要环境保护目标

		151						
环境要素	保护对象名称	方位	距离(m)	规模	环境功能			
	长江	W	约 1100	特大型	《地表水环境质量标准》(GB3838-2002)Ⅱ类标准			
ᆹᆂᆉᅚ	洋思港	N	约 1680	小型				
地表水环 境	芦坝港	N	约 70	小型人	《地表水环境质量标准》(GB3838-2002)IV类标准			
児	胜利中沟	NE	约 290		《地衣小小児灰里你在》(GB3838-2002)IV尖你在			
	翻身中沟	NE	约 1780					
声环境	项目厂界	/	/	. ☆ ` ' /	《声环境质量标准》(GB3096-2008)中 3 类标准			
	天星洲重要湿地	SE	约 6800	总面积约 1.72 平方公里,范围为:天星洲南部 长江滩地	湿地生态系统保护			
生态环境	如泰运河(泰兴市) 清水通道维护区	NE	约 7000	总面积 次 1.3 平方公里,范围为: 西至金沙中 沟段 大 离入江口 7.6 公里)东至泰兴界,如泰运 河及两岸各 100 米范围内	水源水质保护			

本项目环境风险保护目标见表 2.4-4。

表 2.4-4 环境风险保护目标

				12.4			· ·			
类别					环境敏					
					厂址周边 5			1	T	
	序号 敏感目标名称				·	相对方		属性	人口数(人)	
	新星村新星村					SE	约 1900		约 2100	
	2			崇福村		SE	约 2600		约2344	
	翻身					NE	约 2800		约1125	
	4			印桥社区		NNE	约 4800		约9000	
	5			人才公寓		NNE	约 4700		约3146	
	6			乐道仁和原	于 ————————————————————————————————————	NE	约 4600	居住区	约3000	
	7			福泰新村		NE	约 4850		約1890	
	8			大生镇		NE	约 4100	*/	约4.4万	
	9			城南公寓		NE	约 4200	XXX	约3744	
	10			双进村		Е	约 3650	MIN I	约1125	
环	11	泰		卢碾村		Е	约 2880		约1500	
境	12	兴		宋桥村		SE	约 2880 约 3 5 00	1	约2775	
空	13	市		中心幼儿园	चे	NNE	\$\$\\\ \phi\\ \gamma\\		约 120	
气	14			大生初级中	学	NE	4300	学校	约 700	
	15			实验初中		NNE	约 4900		约 2000	
	16			开发区医院	元	NXX	约 4800	医院	约1500	
	17		Ŧ	干发区管委	会	ME	约 4300	办公	约500	
	18		联泓惠生 (江苏)新材料有限公司 🗸		N	约 160		约 78	
	19		江苏正博	诺科技发展	是有限公司	E	紧邻		约 60	
	20		栗田工业(泰兴)水处	上理有限	S	紧邻	周边	约 50	
	21		江苏鸣	川新材料有	可限公司》	S	紧邻	企业	约 60	
	22		江苏延士	大中燃化学	有級公司	NE	约 330		约 300	
	23		中化	七康源生物	技	Е	约 300	1	约 150	
		•		厂块质量	500m 范围内人	口数小t	 	•	约 698	
	和 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为 为								约 77540	
			.1	大气	环境敏感程度	E 值			E1	
	受纳水体									
	序号		水体名	3称		排放占			流经范围为/km	
	1	1	芦坝港		IV类		-	进入长江		
地表水	2		长江		II类	1		~~~~~~ 2~1.5m/s,24 小时流经b 9.6km,未出省界		
. Y		内陆	水体排放点下	游 10km(近岸海域一个流	 朝周期最	大水平距离两倍			
.5	序号		敏感目标名		环境敏感特		水质目标		非放点距离/m	
人XX	1		天星洲重要		重要湿地 /			6800		
~\×		<u> </u>			k环境敏感程度			<u> </u>	E2	
)	序号	环境	İ 敏感区名称	环境敏感 特征	水质目标		包气带防污性能	<u> </u>	与下游厂界距 离/m	
地下水	1		地区之外的 其他地区	G3	/		D2		/	
				地下フ	 环境敏感程度 E 值				E3	

2.5. 相关规划及环境功能区划

2.5.1. 中国精细化工(泰兴)开发园区发展规划(2020-2030)

2.5.1.1. 规划范围及时限

规划区位于泰兴市西侧,规划范围东至鸿庆路、沿江大道,西至长江北路、新港路、滨江路,南至天星大道,北至龙港路,规划面积约 25.17 平方公里。

近期: 时限 2020-2025 年; 范围东至鸿庆路, 西至长江北路、新港路、滨江路, 南至大道, 北至龙港路; 面积约 21.96km²。

远期:时限 2025-2030 年;范围东至鸿庆路、沿江大道,西至长江北路、新港路、滨江路,南至天星大道,北至龙港路:面积约 25.17km²。

2.5.1.2. 产业定位及发展导向

1、产业定位

延伸现有精细化工产业链,逐步向技术含量及附加值高、液体及污染少的高端精细化学品、化工新材料、医药化工转型升级。重点发展氯碱产业链及产业链。不再将煤化工新材料、高分子合成材料作为主导产业,突出产业特色,优化产业链发展,推动产业迭代升级,实现产业"调新、调轻、调精、调绿"。

2、发展导向

引进项目时,积极招引《战略性新兴产业产品目录》和《外商投资产业指导目录》中鼓励 类项目;对园区已有企业实施"腾笼"的项目,突出产业关联度、核心技术和亩均税收贡献 率,坚决杜绝低水平的搬迁项军、园;引导鼓励现有区内企业大力实施技改项目,不断提升企 业创新能力,促进技术工艺、主产设备和产品质量提升,大力引进优质投资方"嫁接重组",提 高核心竞争力。

产业调新: 沿之一公里现有企业进行产业调整与转型升级;由农药、涂料、染料为主的传统精细化工厂的现代精细化工升级。计划将百川化学、舒伦克关停重组,进行丙烯酸系列树脂生产。

业调轻:园区经过"四个一批"、"263"整治文件实际搬迁和关停企业落后产能 41 家;园 进一步淘汰科技水平低、安全环保不过关的项目和产品,推动产业基础高端化。大力推进精 细化学品全产业链,实现由化学合成单体为主,向氯碱化工及烯烃产业链发展。

产业调精:鼓励园区内企业间兼并重组、转型升级,组建产业特色显著、具有核心竞争优势的企业集团。通过"关"、"停"淘汰落后产能和低效企业,通过"并"、"迁"整合优质项目,补链、延链、强链,提升核心竞争力。凯泰化学将中间体延长为原料药,提高附加值。

产业调绿:坚持以"绿色、循环、低碳"为园区发展总基调,建成完善的限值限量监测监控体系,三级防控体系、封闭式管理体系、预防预警、环境管理、安全应急等现代化功能为一体的智慧园区系统建设,推进园区管理规范化、精细化、信息化。以安全环保的"硬核"优势,推动园区绿色循环可持续发展。

近期: 2025 年园区总产值达到 2000 亿元,工业增加值达到 500 亿元,税收达到 80 亿元 远期 2030 年园区总产值达到 3000 亿元,工业增加值达到 750 亿元,税收达到 130 亿元。

相符性分析:本项目为中试基地,主要为园区现有企业或拟入园企业提供新型工艺中试平台服务,符合园区产业定位要求。

2.5.1.3. 产业发展规划

1、产业发展方向

园区立足满足宏观发展形势变化和生态环保、安全生产要求的优先,紧紧抓住全省化工行业转型发展的有利时机,积极调整优化产业结构,推动园区高质量发展。坚持氯碱、烯烃链式发展定力,加快新浦化学、延长中燃等"链主"项目建设,是一本地配套率;加强氯气、氢气、烯烃等延链补链强链,提升产业集聚度和竞争力;集累上下游关联度强、技术水平高、绿色安全可控的企业和项目,实现补链、延链、强链,从发展高端精细化学品、化工新材料、医药产业。

2、精细化工产业

氯碱产业链:依托现有氯碱产业发展医药、新材料及各类添加剂等中下游产业。烯烃产业链:依托现有 PDH 项目乙烯和丙烯供应下游制热塑性聚酯弹性体、聚丙烯热塑性聚酯弹性体、HCC。

(1)氯碱产业链

氯碱是园区的主要原料之一,目前园区已形成了较为完整的氯碱上下游产业链,以新浦化学 75 万 t/a 第一子膜烧碱项目为龙头,产出的氢气、氯气、烧碱分别供应医药、农药、日化、新材料及各类添加剂等中下游产业。

心烯烃产业链

一烯烃产业链是园区另一主导产业链,目前已发展较为完整。该产业链以新浦化学 110 万吨轻烃综合利用项目、延长中燃轻烃深加工项目、嘉瑞化工和新浦化学丙烷制丙烯和制聚丙烯项目为龙头,产出的乙烯和丙烯供应下游制环氧乙烷、氯乙烯、苯乙烯、环氧丙烷、丙烯酸、聚丙烯等项目,从而供应下游日化、材料、涂料、树脂、添加剂等产业。

(3)下一步将继续深耕氢气、氯气、乙烯、丙烯四大深加工板块,发展市场急需的电子级、特种功能性化学品,提高精细化率。其中,氯气深加工板块,重点发展用量较大、附加值较高的电子级氯气、电子级氯化氢等;利用光气稀缺资源发展特种聚氨酯树脂和环保聚氨酯胶粘剂等光气化产品;延伸发展以锂电池材料为重点的新能源电池材料,如三氯化磷与氯气反应制备五氯化磷,再制备锂电池电解质材料六氟磷酸锂;同时发展电子特气、光刻胶、清洗剂、刻效剂、剥离液等电子化学品。氢气深加工板块,重点发展电子级、食品级双氧水和羟乙基纤维;依托泰州国电"碳捕集"二氧化碳加氢制取绿色甲醇。乙烯深加工板块,重点发展环氧乙烷下游精细化学品,依托规模化的环氧乙烷发展特种聚氧乙烯醚及减水剂、聚乙二醇、甲基二乙醇胺、碳酸乙烯酯、乙醇胺/乙撑胺等产品。丙烯深加工板块,重点发展丙烯酸及成分环氧丙烷下游精细化学品,依托规模化的丙烯酰胺、烧碱和丙烯酸发展高档吸水性极,还依托丙烯酸酯延伸发展高性能丙烯酸涂料、特种胶粘剂、丙烯酸酯橡胶;依托规模化的丙烯酸。非离子表面活性剂、聚碳酸大和、丙二醇醚及醋酸酯等产品。

3、新材料产业

化工新材料产业是我国石油和化学工业发展,"十四五"期间,化工新材料将继续保持快速发展态势,国内整体自给率也将不断提及聚焦发展烯烃下游复合材料、高性能树脂、工程塑料、聚氨酯、生物降解塑料(如二氧化碳基生物可降解塑料 PPCP)、聚烯烃塑料、特种合成橡胶和功能性膜材料等新材料。是高规模占比。其中,依托乙烯发展聚乙烯(PE)、氯化聚乙烯(CPE)、乙烯-醋酸、烯共聚物(EVA)、乙烯-丙烯酸甲酯共聚物(EMA)、超高分子量聚乙烯(UHMWPE)。乙烯-辛烯共聚弹性体(POE)等;依托丙烯发展聚丙烯(PP)、氯化聚丙烯(CPP),基型性弹性体(TPE)等;依托苯乙烯发展聚苯乙烯(PS)、聚苯乙烯泡沫(EPS)、甲基丙烯酸甲酯(MMA)、苯乙烯-丁烯共聚物(SEBS)、氢化苯乙烯-异戊二烯共聚物(PPS)等;依托氯乙烯(VCM)发展聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC);利用聚碱发展聚氨基甲酸酯(PU)革料浆、聚氨酯弹性体、聚氨酯涂料、聚氨酯胶黏剂、氨纶等水氨酯下游系列产品;增招聚醚醚酮(PEEK)、聚芳醚醚腈(PEEN)、聚萘二甲酸乙二二烯酯(PEN)等前沿性特种聚合物(工程塑料)。

相符性分析:本项目为中试基地,行业类别为工程和技术研究和试验发展(M7320),待项目建成并投入使用后,可为园区现有企业或拟入园企业提供新型工艺中试平台服务,促进开发区主导产业的有利发展,符合园区产业定位要求。

2.5.1.4. 用地规划和布局

1、土地功能定位

土地功能定位为工业用地,主要为精细化工产业用地。

2、用地分类

本规划总用地面积约 2517 公顷,用地性质主要为三类工业用地、仓储物流用地以及市政设施用地、道路、绿地等,其中工业用地所占比例最高,约为 1916 公顷。近期主要开发园家商部澄江西二路以南、沿江大道以西区域,以及园区东北部未开发区域;远期主要开发澄水西二路以南、沿江大道以东区域。

相符性分析:本项目属于工业用地,符合园区用地规划和布局,土地利用规划体见图 2.5-1 (1) ~2.5-1 (3)。

2.5.1.5. 基础设施规划

1、供水工程规划

(1)水源选择

生活用水由现有的泰兴市安泰水务集团有限公司供水水质达到《生活饮用水卫生标准》,工业用水由现有的开发区水厂供给。

①工业用水

开发区水厂位于通江路南侧、长江路东边以长江为水源,设计取水规模为8万 m³/d,目前已建规模为8.5万 m³/d,主要供给开发区内企业工业用水;规划远期取水规模为15万 m³/d。

②生活用水

泰兴市自来水厂位于龙岸**址**道、金沙路交叉口东南地块,设计取水能力为 20 万 m³/d。

(2)供水系统规划

园区充分利用现场。水干管,城市给水管网以环状布置为主,确保供水安全。规划区给水工程管线系统分为生活用水给水管网系统和工业用水给水管网系统。规划给水干管最大管径500mm,最长径300mm。

给办管道在道路下位置,结合城区现状管网,根据道路走向布置于路东、路南侧。

发始设施依托分析:结合开发区供水管网规划,锦江路供水管网已铺设到位(管径DN300), 新足沿路工业企业的供水需求。

2、排水工程规划

规划区采用分流制排水体制,分为雨水管道系统,污水管道系统。园区现状工业污水管道总长度 80.4km,污水管网密度为 3.19km/km²;规划期间将按照适度超前原则加强建设,建成污水管道总长度 103km,密度达到 4.09km/km²,满足污水全收集、全处理要求。

(1)雨水系统

雨水排水系统沿规划道路布置,由道路雨水口收集雨水,通过管道就近排入小沟。雨水口沿道路两侧布置,并按规范设置检查井。

企业初期雨水均收集后与生产废水一起预处理达接管标准后进污水处理系统。

(2)污水系统

工业区总的地形为北高南低,总的排水方向为从北向南,沿规划干道埋设污水干管,或过自流或设置的提升泵站(其中新建 3 个提升泵站和改造 1 个提升泵站),将污水收集进入污水截污干管,最终进入园区工业污水处理厂处理达标排放。污水干管主要沿长江路、沿江大道、澄江西一路等布置,管径为 D300-400。

(3)污水处理

规划 5 万吨/天的工业污水处理厂将现有化工废水从滨江污水**企**厂 11 万 m³/d 处理设施中分离出并单独处理。

原滨江污水处理厂污水处理设施将只处理城镇的生活水以及区外的少量非化工废水,污水接收规模为 6.5 万 m³/d, 滨江污水处理厂再生水利用水不低于 30%, 实际入河量不超过 4.5 万 m³/d。

滨江污水处理厂尾水经地埋式管道输送规律思东路段 90m 处,进入生态湿地深度处理后,排入新段港河,最终汇入长江。滨江污水处理厂排入生态湿地的水质达《城镇污水处理厂污染物排放标准》(GB18918-2002)——从A标准,经过湿地净化后,进入环境水体的水质主要指标(COD、氨氮、总磷)执行40地表水环境质量标准》(GB3838-2002)中IV类标准,其余指标执行 GB18918-2002 一级各标准。园区拟将滨江污水处理厂处理规模提升至 14 万 m³/d。

工业污水处理厂发出规模 5 万 m³/d,实际接管量不超过 4.5 万 m³/d。工业污水处理厂位于澄江西路北侧、滨江路西侧、沙桐公司南侧、长江路东侧,占地面积 160 亩,服务范围为:泰兴经济开发及、精细化工产业园、循环经济产业园(含重金属废水除外)、药妆产业集聚区、高新技术产业园(行政商务功能配套区除外)。工业污水处理厂已履行环评手续(批复文号:泰尔本化(泰兴)〔2021〕20018 号),现已建成处于试运行阶段。

工业污水处理厂尾水排口位于滨江镇友联中沟闸南南路西侧 10m 处,尾水排入友联中沟,通过友联中沟进入滨江中沟,最终通过洋思港排入长江,排污口安装 pH、COD、氨氮、流量等在线监测仪器,污水处理厂尾水水质主要指标(COD、氨氮、总磷)执行《地表水环境质量标准》(GB3838-2002)中IV类标准,其他污染因子执行《城镇污水处理厂污染物排放标准》(GB1818-2002)中一级 A 标准。

工业污水处理厂处理工艺采用"预处理单元(预处理调节池+预处理高效沉淀池+预处理 V型滤池+预处理活性炭滤池)+主处理单元(主处理调节池+生化反应池+二沉池+高效沉淀池+V型滤池+提升泵房+臭氧接触池+Flopac滤池+尾水泵房)+尾水深度处理提升装置(活性炭吸附+折点氧化法)"。

根据《省生态环境厅省科学技术厅省商务厅关于印发江苏省产业园区生态环境政策集成改革试点方案的通知》(苏环办〔2019〕410号〕,附件《江苏省产业园区生态环境政策集成改革试点方案》第10条"支持园区内企业参股共建污水集中处理、固废集中处置、园区集中供热等环境保护基础设施……印染、电镀等同类产业园区,可委托专业机构或园区污水处理厂建设运营同质废水集中预处理设施,企业污水须通过地面明管"一企一管"接入,发生理达接管标准后纳入园区污水处理设施处理……"。据此在满足要求的前提下,园区为改建设同质废水集中预处理设施。

本项目废水预处理达标后排入开发区工业污水处理厂集中处理,园区建废水集中预处理设施后,根据集中预处理设施设计指标按园区管理要求执行。

本项目在泰兴经济开发区工业污水处理厂服务范围,废水接入泰兴经济开发区工业污水处理厂进行深度处理,尾水排入长江。

园区雨水管网规划详见图 2.5-2、园区溪水管网规划详见图 2.5-3。

基础设施依托分析:结合开发区面 (管网规划,锦江路污水输送管网(管径 DN150~1790)、雨水管网(管径 DX 00)已铺设到位,可满足沿路工业企业的污水接管及雨水排放需求。

3、中水回用规划

拟依托现有 3 万%,米/日中水回用工程,对其扩容改造,形成 5 万立方米/日中水处理规模的中水回用厂。 业污水处理厂规划中水回用量 9000t/d,规划期工业污水处理厂中水回用率不低于 20%,达回用水质标准后回用至园区各企业或作为园区杂用水等。中水处理工艺建议采用"滤水过滤+超滤(UF)+反渗透(RO)过滤"的组合处理工艺,处理后的回用水水质标准参照、石油化工污水再生利用设计规范》(SH3173-2013)、《工业循环冷却水处理设计规范》、GB/T 50050-2017)以及《城市污水再生利用 城市杂用水水质》(GB/T18920-2020)等从严执行。

4、电力工程规划

目前开发区范围及周边建成 220kV 变电所 2 座,主变压器 4 台,共计 720MVA;110kV 公用变电所 3 座,共计 293MVA。开发区现状公用变电所向各片区供电,能满足园区用电需求。

5、燃气工程规划

"西气东输"天然气通往泰兴后,将以西气为主要气源,由泰兴市气门站统一调配,西气成分主要为甲烷,约占 97%; 天然气重度为 0.75 公斤/立方米,低热值为 36.3 兆焦/标立方米。同时,考虑在天然气门站布置压缩天然气储配站,以满足上游供气缺口和储气调峰的需求。

燃气由中压管网至各用户专用中低压调压站,经调压后供应工业和公共建筑几户使用。

中压燃气干管布置在主要道路上,主要燃气管道连成环网,保证供气安全规划中压燃气主干管道布置在沿江大道等主要道路,管径为 DN300。其余道路布置 DN200 燃气中压管道。

基础设施依托分析:结合开发区燃气管网规划,锦江路燃产营线(管径 DN300)已铺设到位,可满足沿路工业企业燃气供给需求。

6、供热规划

规划热负荷主要为工业企业的生产用汽,根据区区现有工业企业用汽量,估算规划区建成后,园区平均时用汽量约为 1300t/h。

园区以区内现有新浦热电厂、三峰环保公司和区外国电泰州电厂、江苏奥喜埃热电厂作为本区集中供热热源,其中新浦热电压设计供热量 1075t/h(其中新浦化学自用约 250t/h);三峰环保公司供热量 60t/h;区外军电泰州电厂供热能力 1000t/h;奥喜埃热电厂供热能力 150t/h。4个热源点共用一套供热管场,实现"互联互通",供气由泰兴市恒瑞供热管理有限公司统一调度及运行管理,热源发达可以实现互相补充,确保园区企业中、低压蒸汽的稳定供应。

热力管道主要% 园区公共管廊上层敷设,其余个别热力管道沿河、沿次干道采用低支墩架 空敷设,为烧头美观和交通顺畅,过路热力管道埋地敷设。

热力管道在道路下位置,东西走向位于路南侧,南北走向位于路西侧。

基础设施依托分析:结合开发区热力管网规划,锦江路热力管线(管径 DN200)已铺设到位,可满足沿路工业企业热力供给需求。

7、供气功能及余热利用规划

(1)供气

园区建设 DN300 氢气总管、DN200 氢气总管,并建设至用户各支线,具体实施范围如下: 建设闸北南路(团结河至金港西路) DN300 氢气总管 9900 米;建设疏港路闸南路(滨江路至 金港西路) DN200 氢气总管 8000 米;建设疏港路、通园路、洋思港路、幸福路等支线 4000 米。

氢气气源单位分别有:新浦化学氯碱厂,供气能力 18000Nm³/h、新浦化学烯烃厂22000Nm³/h、延长中燃 33000Nm³/h,后期根据氢气使用需求,嘉瑞化工也可提供工10000Nm³/h。
(2)供能

构建综合能源体系,大力推进绿色低碳能源发展,同步开展企业节 增效,推动减碳工作。

(3)余热利用

通过存量企业转型升级,实施绿色化、智能化改造,实现** 工业气体、压缩空气等能源统一供应、余热回收应用于

8、公共管廊规划

(1)管廊布置形式

化工管廊所输送的化工品、油品大多具有可燃 管廊布置方式为地上管架式。化工园区数 性、爆炸危险性、毒性及腐蚀性的特点, 管道须经常维护、检修。管廊须跨越河流、公路等 下水位较高,工程地质条件较差。因此园区公共化工管 天然障碍物, 经由路段原为滩涂地 *** 可有效利用空间,节省投资,方便维护、检修、管理。

边缘一般不小于 1.0m;至人行道边缘不小于 0.5m;至企业围墙(中 全河道顶边缘不小于 3 米;至照明及通信杆柱(中心)不小于 1.0m。管廊 ★力线路的边导线最小水平间距:开阔地区为最高塔高,在路径受限地区为4米。 叉口的管架,应满足道路视距空间和限界要求。

]在园区主要道路旁统一建设公共管廊架,用以各产业链企业之间、各企业与公用工程 前助工程之间、公用工程之间的连接,输送蒸汽、工业气体、液体化工物料、污废水及建设 电力电缆、通信电缆等。

园区规划设蒸汽、氮气、氢气、烧碱、液氨、油脂及污废水管网,其他物料管道需根据具 体项目进展而定。

9、物流仓储规划

园区仓储物流区主要设置于区内西北部临江区域,仓储物流区按液体类别、化学性质等分区建设。园区原材料主要通过船舶运送至仓储物流区,主要包括丙烯、乙烯、棕榈油、丙烯酸、醋酸、醇类,邻二甲苯、氯乙烯、苯、硫酸、卤水、乙烷、丙烷等物料,部分固态原材料使用汽车运输,包括工业盐、活性炭、包装材料等。仓储区向下游企业输送液态、气态物料充分利用园区管廊,固态物料使用皮带机或汽车运输至下游企业。企业产品分装后主要通过汽车、船舶运输至园区外流向市场,对园区内部的下游企业输送产品时大部分通过园区管廊实现运输。

10、港口岸线规划

港口规划以完善港口布局,拓展港口功能,提高生产效率和服务水平为原则,规划范围内的长江岸线沿阳江西一路至锦江西路均为港口岸线,其中区域内水系入江出土的局部区域规划为生态绿地。如泰运河为区域内的六级航道,向东汇入长江一级航道。

规划将严格按照《长江保护法》的规定,对长江流域河湖岸线关地特殊管制,严格控制岸线开发建设,促进岸线合理高效利用。

- ①禁止在长江干支流岸线一公里范围内新建、扩建从五边区和化工项目。
- ②禁止在长江干流岸线三公里范围内和重要支流产线一公里范围内新建、改建、扩建尾矿库;但是以提升安全、生态环境保护水平为目的成改建除外。

11、生态环境保护规划

(1)规划控制目标

规划提出的环境保护控制目标 表:

		_表 2.5-1 园区环境保护规划控制目标	
类别	环境目标	采样标准	控制值
	3	《环境空气质量标准》(GB3095-2012)二级	改善
环境 质量	符合环境过程	【《地表水环境质量标准》(GB3838-2002)II、III、IV类,其中,长 江执行II类标准;如泰运河、天星港等执行Ⅲ类标准,其他内河参 照执行IV类标准	100%
		《土壤环境质量建设用地土壤污染风险管控标准(试行)》 (GB36600-2018)	100%
		《声环境质量标准》(GB3096-2008)3 类	100%
.x	25)	《大气污染物综合排放标准》(DB32/4041-2021)二级	100%
	'	《燃煤电厂大气污染物排放标准》(DB32/4148-2021)	100%
XX.		《燃气电厂大气污染物排放标准》(DB32/4386-2022)	100%
人 污浊。	 污染物达标排放	《锅炉大气污染物排放标准》(DB32/4384-2022)	100%
◇ 污染 - 控制		《工业炉窑大气污染物排放标准》(DB32/3728-2019)	100%
1111		《石油化学工业污染物排放标准》(GB31571-2015)	100%
		《无机化学工业污染物排放标准》(GB31573-2015)	100%
		《合成树脂工业污染物排放标准》(GB31572-2015)	100%
		《恶臭污染物排放标准》(GB14544-93)	100%

		《化学工业水污染物排放标准》(DB32/939-2020)	100%
		《城镇污水处理厂污染物排放标准》(DB32/4440-2022)	100%
		《危险废物贮存污染控制标准》(GB18597-2023)	100%
		《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)	100%
		《工业企业厂界环境噪声排放标准》(GB12348-2008)3 类、4 类	100%
		《化学工业挥发性有机物排放标准》(DB323151-2016)	100%
	有效控制 环境风险	防范措施及应急预案	完善人
	水资源循环利用	工业用水重复利用率	738
	固体废物	一般固体废物安全处置率	1330%
	综合利用	危险废物安全处置率	100%
环境	项目环评和"三同 时"执行率	/ **	100%
管理	环境信息公开化	/	全公开

(2)污染防治措施提升改造

①大气污染控制措施。电厂实行超低排放改造;新建工业企业度、排放执行国标或地标排放的 80%, 2025 年所有企业执行到位;鼓励部分企业提升改造、2025 年 30%的企业执行国标或地标排放浓度的 50%。

②水污染控制措施。对污水处理厂进行提标改造,水排放主要污染物达《地表水环境质量标准》(GB3838-2002)中IV类水标准。

(3)固废处置规划

①一般工业固废

区内一般工业固废由企业进行分类 发集,综合利用,一般工业固废综合利用率达到 95% 以上。

②危险固废

A 园区危险固废管择要求

鼓励企业加大**分**险废物污染防治科技研发投入。加强危险废物产生、利用处置、污染防治等方面的基础之,和应用研究。

鼓励允祉根据需要自行配套建设高标准的危险废物利用处置设施。危险废物要基本实现就近及被安全处置,需焚烧填埋处置的危险废物在园区内消纳率近期应达到 60%以上,远期应达 80%以上。危险废物年产生量 5000 吨以上的企业必须自建利用处置设施。危废贮存设施规划、环评、安评、消防等手续须合法、完整;年产危废 100 吨以上的应落实安全合法处置去向,且累计贮存不得超过 500 吨;

产生危废3吨以上的,需要及时申报,不得瞒报、漏报;具有易燃易爆等特性的危废,应按规定,在稳定化预处理后存入危废仓库;危险废物应及时清运处置,最大允许贮存时间不超过90天。

B.危险废物安全储存

园区内企业应规范建设危险废物贮存场所。危险废物贮存设施建设应符合《危险废物贮存污染控制标准》中的相关要求,有堵截泄漏的裙脚、地面与裙脚要用坚固防渗的材料建造,有隔离设施、警报装置和防风、防晒、防雨设施,贮存设施至少满足正常生产 15 天产生的各类危险废物贮存需要。

C.危险废物安全处置

园区危险废物安全处置率达 100%。本规划区危险固废可送园区内从区外有资质危废处置单位处理。需焚烧填埋处置的危险废物在园区内消纳率近期应达到 80%以上,远期应达到 80%以上。

D.建立固体废物全生命周期管理系统。

区内企业应按规范建设全生命周期管理系统,加强对危险废物产生、收集、贮存、运输、利用、处置全环节全过程管理,监控信息与园区长分联网率达100%。

③生活垃圾

生活垃圾实行分类袋装化,建设垃圾收集房,发展垃圾压缩运输。生活垃圾转运站设置,当采用非机动车收运方式时,其服务上径为 0.4~1.0km; 当采用小型机动车收运方式时,其服务半径为 2.0~4.0km。

(4)环境应急体系规划

①建立应急响应 和应急救援队伍

园区内建设应急指挥中心,以各企业监控平台、园区在线监控中心、大气自动监测预警点及地表水自从测预警点等污染源、风险源、环境质量监控平台为基础,建立数字化、信息化的园区或各响应平台。同时建立环境应急处置队伍,包括应急指挥部、通信联络队、侦检抢修队、方救护队、应急消防队、治安队、物资供应队和环境应急监测队等。

②储备必要的应急物资和设备

园区应储备必要的环境应急物资和设备,应储备的应急物资主要包括针对毒性气体应急物资和油品泄漏应急处理物资等,应急救援设施主要为危险化学品事故应急处置机械设备等。

③建立三级应急体系

建立以开发区突发环境事件应急救援指挥中心为核心,与地方政府(上级)和企业单位(下级)应急救援中心形成联动机制的环境风险应急体系,即企业、化工园区和泰兴市"三级"环境风险应急体系。

④构建完善的园区水环境三级防控体系

园区内企业均应安装动力排污系统,规划实行"一企一管",工业废水全部安全处置。为加强园区雨水及清下水管控,实施入河排污口截污三级防控体系,包括: a、企业防控体系为园区 100 个企业清下水排放口安装动力排放和在线监控设施,并与开发区信息平台联网,超标清下水自动打回企业工业废水处理装置; b、园区防控体系。对园区 92 个道路再决论流排放口安装截止阀,建设截污井,实施事故废水截污回流; 设置 1 万 m³ 的事故应金。(共 4 座)。c、入江河道防控体系。园区入江河道均建有入江闸控系统,目前正在建设和力回流装置,计划2023 年底前建成。事故状态且前两级防控不力时,可通过回流装置,分河废水专管输送至区域事故应急池,可有效防范二次污染事故。

建设单位已安装污水动力排污系统,循环冷却系统排发清下水与污水一起排入开发区工业污水处理厂集中处理。

⑤实施封闭管理

加强封闭管理:结合园区产业结构、安全风险类型等实际,建立封闭管理体系,健全软硬件建设,实现危险化学品全过程动态管控、对化工建成区实现封闭化管理。

(5)环境监测监控体系规划

按照《关于印发江苏省工业园区(集中区)污染物排放限值限量管理工作方案(试行)的通知》(苏污防攻坚指办 221)56号)、《全省省级及以上工业园区(集中区)监测监控能力建设方案》(苏维尔〔2021〕144号)要求,园区规划建成监测监控系统:

①上下风向空气自动监测站 2 个 (新建),园区周界空气微站 16 个 (其中新建 10 个,填平补齐 6 个 2 园区内部空气微站 25 个 (其中新建 11 个、填平补齐 7 个、移点+填平补齐 7 个)、原产控制点微站 3 个 (新建)、主导风向下风向空气微站 6 个 (新建),周界及敏感点恶处系统 9 个 (新建);

《*** ②上下游水质自动站 2 个(移点+填平补齐)、小微型水站 27 座污水处理厂进口、排口在 线设施 5 个(填平补齐)。

(6)生态建设规划

①积极探索绿色低碳转型发展路径,统筹谋划产业结构优化、可再生能源开发、"一企一策"节能降碳诊断、资源要素差别化管理、污染物排放限值限量管理等,减污降碳规划,能源

体系建设,全面推进减污降碳协同增效发展,致力打造绿色低碳示范园区。2030年实现碳达峰。

②水生态整治规划:对开发区内所有通江河流开展整治。以主要河流"五横五纵"、道路"四横四纵"为框架,构建河流生态廊道和道路生态廊道。

开展全水系统建设:基于开发区内完整的水循环过程,从供(取)水一用水一污(废)水收集一污(废)水处理一达标尾水排放与再生水回用一污泥处理处置及资源化等与水管理水产的全流程出发,统筹考虑各系统相互间的协同与制约关系,梳理出主要控制节点与关键环节,并通过全系统平衡分析来明确各节点及环节的控制要求,从企业、开发区、周边纳污水体三个层面设计一体化水管理创新解决方案,形成全过程开发区水管理体系。开展从下内部河道生态化改造,提升河道自净能力。

- ③通江路至北二环段进行绿化防护林建设,洋思港至南三环段发行绿化防护林建设。
- ④土壤地下水监测管控规划(关停拆除企业实行修复或管验 在产企业监测修复或管控)
- ⑤生态工业园区创建,2020年,园区单位工业用地产工业增加值8.42亿元/平方公里,单位工业增加值新鲜水耗10吨/万元,园区将积极推进产态工业示范园区创建工作。
- ⑥根据泰兴市"三区三线"划定方案,园区规划范围内基本农田经调整置换后,剩余约60公顷,主要集中在园区东南部未开发区域。环境要求未完成置换的基本农田不得进行开发利用。

依托可行性分析:本项目雨水就近找 园区雨水管网,经园区雨水管网排入园区内河;废水排入泰兴经济开发区工业污水处 ,根据措施可行性分析章节可知泰兴经济开发区工业污水处理厂有能力接收本项目废水 本项目新增蒸汽用量约为15t/h,在园区供热能力范围内,综上所述,本项目的基础设施发托园区工程是可行的。

2.5.1.6. 规划环评审查意见

2003 年泰兴经济开发区管委会委托生态环境局南京环境科学研究所进行了园区环境影响评价和环境级,并于 2003 年 12 月通过了江苏省环境保护局批复(批准文号: 苏环管〔2003〕 238 号》 2007 年园区管委会委托生态环境局南京环境科学研究所进行中国精细化工(泰兴)开发园区回顾性环境影响评价工作,并于 2008 年通过江苏省环境保护厅批复(批复文号: 苏管〔2008〕104 号)。2022 年编制了《中国精细化工(泰兴)开发园区发展规划(2020~2030年)环境影响报告书》,于 2023 年 4 月获得江苏省生态环境厅批复(苏环审〔2023〕22 号审查意见),审查意见落实情况见表 2.5-2。

拟建项目与审查意见(苏环审(2023)22号)相符性分析 表 2.5-2

审查意见

- 本项目情况 (一)《规划》应深入贯彻落实习近平生态文明思想,完整准确全面 园区不断完善规划, 与泰兴市 贯彻新发展理念,坚持生态优先、节约集约、绿色低碳发展,以生态 城市总体规划、土地利用规划等规 保护和环境质量持续改善为目标,做好与国土空间总体规划和生态环 划衔接,产业定位、发展规模、空 间布局等符合上位规划。合理规划 布局,设置控制带和防护带。本项 目符合园区规划。
- 境分区管控体系的协调衔接, 进一步优化《规划》布局、产业结构和 发展规模,降低区域环境风险,协同推进生态环境高水平保护与经济 高质量发展。 (二)严格空间管控,优化空间布局。严格执行《中华人民共和国长 江保护法》以及长江经济带负面清单等法律法规和政策要求,沿江干 支流一公里范围禁止新建、扩建化工项目。2025年底前,关闭退出长 江干流一公里范围内飞天化工、昱宏化工、康鹏专用化学品、顺丰化 工等 10 家企业,清退双键化工、万得化工、沙桐化学东厂区、南京开 广、玉华金龙等5家企业长江干流一公里范围内生产装置,对百力化 学(北厂区)、常隆农化、联成化学、三蝶化工等31家企业实施整治

提升,对金燕码头、阿尔贝尔码头运输货种进行优化调整,降低区域 环境风险。禁止开发利用园区内绿地及水域等生态空间,严格执行产 业园边界 500 米隔离管控要求,禁止规划居住、医疗、教育等用地,

- 华人民共和国长江保护法》 江经济带负面清单等及律法规和政 策要求,不属于生产型新建、扩建 化工项目。不及为利用园区内绿地 及水域等生产间,园区及周边 500 米隔离带产通内的居民已陆续搬 迁,全种事新建学校、医院、居 民人主等敏感目标。
- 确保产业布局与生态环境保护、人居环境安全相协调。 (三)严守环境质量底线,实施污染物排放限值限量管理。根据国家 和江苏省关于大气、水、土壤污染防治、区域生态环境分区管控 业园区(集中区)污染物排放限值限量管理相关要求,建立以环 量为核心的污染物总量控制管理体系,推进主要污染物排放流文和总 量"双管控"。落实《报告书》提出的挥发性有机物及恶身文体等各项污染防治措施,强化源头治理以及精细化溯源管理,通过这域生态环 境质量持续改善。强化有机废气、酸性废气及异味 排放控制、高 效治理以及精细化管控。2025年,园区环境空气、12.5年均浓度应达 到 33 微克/立方米以下,如泰运河、天星港区(C)定达到地表水III类标 准。加快关闭、搬迁遗留地块土壤调查评人风险管控、治理修复等 工作。

本项目建成后废气均处理后达 标排放,废水处理满足标准后接管 泰兴经济开发区工业污水处理厂。

工作。 (四)严格生态环境准入,推动高质**发**发展。统筹优化产业定位和发 展规模,聚焦集约高效,提升发展效效。严格落实生态环境准入清单 (附件2),落实《报告书》设象的各片区生态环境准入要求,严格 限制与主导产业不相关且排产负荷大的项目入区,执行最严格的行业 废水、废气排放控制要,因区污染物总量达到限值后,新引进排放 同类污染物的企业或为有同类企业进行改扩建不得增加园区污染物 排放总量。严格管容新污染物的生产和使用,加强有毒有害物质、优先控制化学品会产 提出限制或禁止性管理要求。引进项目的生产工艺、设备, 产单位产品能耗、污染物排放和资源利用效率等均应达到同行业成场先进水平。严格落实《报告书》提出的清洁生产改造计划,抵充某材料转化和利用效率,全面提升现有企业清洁化水平。根 据区家和地方碳减排、碳达峰行动方案和路径要求,推进园区绿色低 其型发展,优化产业结构、能源结构、交通运输等规划内容,实现 **减**污降碳协同增效目标。

本项目为中试基地,符合园区 生态环境准入清单要求,新增总量 指标满足园区总量控制限值要求。

(五) 完善环境基础设施建设, 提高基础设施运行效能。推动企业节 约用水,采取有效节水措施,提高工业用水重复利用率,源头减少废 水产生和排放。建设园区中水回用工程,规划近期回用率不低于20%, 远期回用率不低于30%,再生水回用至园区内各企业,加快建设园区 人工湿地和河道生态系统修复工程,加强园区初期雨水收集处理,减 轻对长江水环境的不利影响。整合关停江苏奥喜埃热电厂, 推进新浦

本项目采取了节水措施,项目 初期雨水进入厂区污水处理设施, 危险废物委托有资质单位处置。

化学燃煤机组开展节能改造,推动三峰环保抽凝机组改背压机组,提高能源利用效率。加强园区固体废物减量化、资源化、无害化处理,一般工业固废、危险废物应依法依规收集、处理处置,做到"就地分类收集、就近转移处置"。

(六)建立健全环境监测监控体系。严格落实污染物排放限值限量管理要求,完善园区监测监控体系建设。开展包括环境空气、地表水、地下水、土壤、底泥等环境要素的长期跟踪监测与管理。结合区域跟踪监测情况,动态调整园区开发建设规模和时序进度,优化生态环境保护措施,确保区域环境质量不恶化。建立并完善土壤及地下水隐患定期排查制度。根据园区地下水环境状况调查发现的特征污染物超标情况,组织开展地下水环境状况详细调查,排查污染原因并采取相应的管控措施。探索开展新污染物环境本底调查监测,依法公开新污染物信息。建设完善"一园一档"生态环境管理系统,提高特征污染物、化学品、泄漏检测与修复(LDAR)、企业环境应急预案及环境风险评估报告等信息报送完整率,提高产业园生态环境管控信息化水平。指导区内企业规范安装在线监测设备并联网,推进区内排污许可重点管理单位自动监测全覆盖;暂不具备安装在线监测设备条件的企业,应做好委托监测工作。

(七)健全园区环境风险防控体系,提升环境应急能力。进一步完善园区完善三级防控实施方案,按规定落实工程措施、配备大流量转输泵等设备,确保事故废水不进入外环境。加强环境风险防控基础设施配置,配备充足的应急装备物资和应急救援队伍,提升产业园环境方控体系建设水平。按照《港口码头水上污染事故应急防备能力,次次,落实《报告书》提出的码头应急防备能力建设内容。根据依区环境风险动态调整情况,及时开展环境风险评估,修订应急预认》完善环境应急响应联动机制。定期开展环境应急演练和三级风险防控验证性演练。建立突发环境事件隐患排查长效机制,定期抗失突发环境事件隐患,建立隐患清单并督促整改到位,保障区域、党安全。

企业将按照园区要求建立企测制度,做好地下水、土壤隐分排查,设置非甲烷总烃在线监测,并委托检测单位进行定期监测。

本项目设置应急事故池,雨水排口设置截断阀,加强风险防范应急体系建设。建成后做好与园区应急措施的衔接工作,及时编制应急预案,并定期进行隐患排查工作。

本项目严格执行"三同时"制 度。

本项目按要求开展环境影响评价工作,重点开展工程分析、污染物允许排放量测算、环境风险评价和环保措施的可行性论证等工作,重点关注挥发性有机物管控措施、应急体系建设等内容,强化环境监测、环境保护和风险防控措施的落实。

(4) 所述,开发区现状供水、供气、给排水等基础设施能够满足本项目运营需求,同时, (5) 目的建设满足开发区规划环评及审查意见要求。

5.1.7. 园区存在的环保问题及整改措施实施进度

园区存在环境问题、整改措施及实施进度要求具体见表 2.5-3。

表 2.5-3(1)	园区现左在的环境问题	整改措施及实施进度一览表
1x 2.3-3 (1)	レリレヘンパイナ1エロリンドル見 191 延久 🔻	常以16加以安加近冷 外仪

	77 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7			
项目	主要环境问题/制约因素	整改措施及建议	实施单位	实施进度要求
空间布局	沿江一公里涉及企业(厂区)现有 50 家(部分涉及的 26 家,全部涉及的 24 家),为 42 家化工企业+4 家码头仓储企业+4 家基础配套或民生保供企业。		◇◇ 企业及园区 管委会	2025 年底前完成
	根据泰兴市"三区三线"划定方案,园区规划范围内基本农田经调整置换后,剩余约60公顷,主要集中在园区东南部未开发区域。	严格执行泰兴市"三区三线"划 次 为案,未完成置 换的基本农田不得为为开发利用	园区管委会	相关地块开发建设前完成
园区关停搬迁化 工企业的整治	列入"四个一批"以及"263"专项整治范围的化工企业 均已拆除,用地需进一步修复整治。	开展拆除地块的土壤评估和修复。	企业及园区 管委会	场地调查采样及数据分析 基本完成,根据场地调查 结果开展土壤修复工作
		国山树工 2005 左定龄子值光柱从工人心一吃	*	

表 2.5-3(2)沿江一公里范围内拟于 2025年底前关停并转化工企业一览表

		F - 1
序号	企业名称	现状
1	泰兴百川化工有限	己关停
2	泰兴市飞天化工有限公司	已关停
3	泰兴市昱宏生工有限公司	己关停
4	泰兴市康鹏文市化学品有限公司	己关停
5	江苏文学化工有限公司	己关停
6	泰兴市沃特大化工有限公司(南北厂区)	生产
7	市远东化工有限公司	生产
8	泰兴锦富化学有限公司	已签订拆迁协议
9	大 工苏晶化天成新材料科技有限公司	停产
10	泰兴市富安化工有限公司	停产

经与开发区管委会确认: 2021 年以下,园区一公里范围内企业实施安全环保整治提升项目 92 个,总投资 397405 万元。

2.5.2. 泰兴市城市总体规划(2014~2030)

《泰兴市城市总体规划(2014~2030)》于 2015 年 9 月 6 日获得江苏省人民政府批复(苏政复(2015)90号)。其主要内容如下:

(1)综合目标

至 2020 年,综合实力显著提升、人民生活显著改变、经济质量显著提高、科教发展显著进步、文化实力显著加强、生态环境显著改善,基本实现现代化;至 2030 年,总体达到大达国家或地区当前发展水平,建成经济繁荣、社会文明、生活幸福、环境优美的和谐新泰兴。

(2)产业发展定位

江苏省现代农业示范区,以精细化工、新材料与装备制造为特色的沿江流光道业基地,以商贸、物流与旅游为主导的现代服务业集聚区。

(3)产业布局引导

①第一产业:以构筑现代化农业体系为导向,围绕区域优级业资源分布,促进现代农业园区建设,打造"两区多基地"的农业布局。"两区"为南部级农业产业区和北部生态农业产业区;"多基地"为以花卉苗木、生态养殖、特色林业等为的多个农业产业基地,包括宣堡花卉苗木基地、广陵现代农业基地、珊瑚生态养殖基础、虹桥高效农业基地。

②第二产业:加快发展减速机制造、电子气、油脂加工、医药及包装材料、乐器制造、牛仔布织造及服装加工等"六大特色产业、群";积极培育壮大新材料、新能源、节能环保设备、高端装备制造等新兴产业。推动二文地一步向"一区四园"集中,打造专业化的特色产业园。"一区",即泰兴经济开发区及其写的关联的城区科技工业园区;"四园",即城东工业园、虹桥工业园、黄桥工业园和泰兴及产品加工园。

泰兴经济开发区,合现有化工企业,分北、中、南三片,分别建设橡胶新材料产业基地、日化产业基地和化工新材料产业基地。积极发展循环经济,加快新材料产业发展和新能源产业龙头型重大工工工大发,

③第二产业:结合泰兴现有的服务业发展载体,形成"一主两副多节点"的服务业空间布局。 "工作副"即中心城区综合服务中心、黄桥综合服务副中心、虹桥综合服务副中心;"多节点" 活苏中沿江化工物流园、虹桥金属材料物流园、泰兴火车站综合物流园、泰兴农产品加工园 区物流园、天星港仓储物流园等各类物流基地,以及宣堡、虹桥、新街等三个旅游服务基地。

相符性分析:本项目选址位于泰兴经济开发区,为中试基地建设,可为园区现有企业或拟入园企业提供新型工艺中试平台,符合《泰兴市城市总体规划(2014~2030)》对于泰兴经济开发区发展规划的要求。

2.5.3. 泰州市国土空间总体规划(2021-2035年)

根据《泰州市国土空间总体规划(2021-2035 年)》:本规划分为市域、市辖区、中心城区三个空间层次。

市域层次包括泰州市行政区域范围。市域层次落实省级国土空间规划要求,明确目标定位和城市性质、全域结构性管控和统筹协调措施、国土空间规划分区、控制线划定、国土空间总结构优化、城镇体系、要素支撑体系、生态修复和国土综合整治等内容,对三个县(市场国土空间总体规划提出规划引导要求。

市辖区层次包括海陵区、医药高新区(高港区)、姜堰区行政区域范围。市辖区层次细化国土空间规划分区、镇村布局、要素支撑体系、生态修复和国土综合整治等。

中心城区层次包括海陵区、医药高新区(高港区)、姜堰区所属金属道以及野徐镇、白马镇、苏陈镇、永安洲镇的行政区域范围。中心城区层次明确空间金属优化、功能布局和重要设施布点等要求。

泰州市国土空间开发保护总体格局为: 衔接省域国土为闭总体格局,顺应里下河—通南高沙土—沿江圩区自然地理格局,统筹农业、生态、城镇之间,构建"一主一带、两源三片"的市域国土空间总体格局。

- "一主"指泰州市中心城区,重点增强要求聚配置能力,统筹发展高新技术产业和服务经济,合力打造江苏省崛起中部的产业增长级,引领全市高质量发展。
- "一带"指沿江绿色转型发展带近北沿江生态环境保护修复,积极推动沿江地区产业结构绿色化和空间集约化升级,打造高质量发展的绿色经济走廊。

"两源"指西北湖荡湿地无态源和溱湖生态源,增强生态系统的稳定性、多样性,协同构筑江淮湖群生态绿心,地产里下河地区湿地生态质量。"三片"指里下河、高沙土及沿江农业片区,保障粮食和重要农产品供给安全。

产业发展的间保障:规划重点保障"一个产业体系、四个特色产业集群"(大健康产业体系,海工装备的高技术船舶、汽车零部件和精密制造、化工及新材料、光伏和锂电特色产业集群)建设分析增工业用地优先保障重点产业园区用地需求,优先利用批而未用工业用地,盘活闲置企业用地,提升产业园区用地效益。

相符性分析:本项目选址位于泰兴经济开发区,位于沿江绿色转型发展带,用地属于工业用地。本项目属于中试基地,行业类别为工程和技术研究和试验发展(M7320),为开发区区内及拟入园区企业提供新型中试服务,可有利促进开发区的产业发展,符合规划要求。

本项目与泰州市国土空间规划关系图见图 2.5-5。

- 2、地表水环境:根据《江苏省地表水(环境)功能区划(2021-2030)》(苏环办〔2022

97

及托鑰割了《泰兴市標下投资有限公,并于 2021年 II 月取得泰州市行政市批及,并于 2021年 II 月取得泰州市行政市批及

1 现有项目环保手续履行情况一览表

建设内容

基建设内容

基建设内容

基本计单组(基兴) 基本元政建

基本作组(基兴) 基本元政建

基本作组(基兴) 基本元政建

技术等等
(2021 20297号 设,自建工

(排污许可证申请与核发技术规范 总则》(HJ 942-2018) 新行项目无需申请排污

正。

3.3. 建设内容

根据现有项目环评报告,其主要建设内容如下:

表 3.1-1	现有项	目环保引	≦续履行	情况一	·览表
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 1 VIV 1		111776	

序号	项目名称	建设内容	环评批复	建设情况	验验情况
1	泰兴经济开发区 中试孵化产业园 项目	占地 108.1 亩,建设 8 栋中 试厂房、1 栋综合楼、1 座中 控室等	泰行审批(泰兴) (2021)20297号	基本完成建设,目前未投入使用。	* 暂未验收

# 表 3.3-1 现有项目主要建设内容一览表

			农5551 况有项目工文建设内存 远农		
[程名称		[程名称	环评设计规模	实际建设规模	变化情况
	1#	甲类厂房			
	2#	甲类厂房			
	3#	甲类厂房			
	4#	甲类厂房			
主体	5#	甲类厂房			
工程	6#	甲类厂房			
	7#	甲类厂房			
	8#	甲类厂房			
	:	综合楼			
		中控室			
	化	学品仓库			
储运		<b>科罐区</b>			
工程	汽	车装卸站			_
		管廊			LE CONTRACTOR OF THE PARTY OF T
辅助		道路			W.
工程		绿化			37
		供电			
		给水		(1)	
		排水			
л ш		供热			
公用		供气		· KA	
工程	约	宗合水站		· · · · · · · · · · · · · · · · · · ·	
	循	环冷却水			
		空压站		W.	
		氮气站			
		质检实验室	<b>M</b>		
J.	废气 [	危废库			
1 3	か理 [	污水处理站			
环保 i	<b>殳施</b>	后续入驻项目	Zy W		
工程		口头八牡坝日			
	废力	く处理措施			
	田山	<b>受处理措施</b>	~1\$\text{\$\times\$}'		
	四万	スプレ王1日/旭	$\wedge$		

## 3.4. 污染物产排情况分析

由于现有项目正在建设中,其污染物产排情况依据现有环评报告进行统计,具体如下:

## 1、废气

根据现有项目环评,其主要对各类构筑物进行建设,不涉及废气产生及排放,后期入驻企业废气污染物产排情况要求另行环评分析。

## 2、废水

根据现有项目环评,其废水项目主要有基地工作人员生活污水及后期入驻企业产生的各类废水,其中生活污水预处理后接管开发区污水处理厂,入驻企业废水污染物产排资况要求另行环评分析。

## 3、噪声

根据现有项目环评,中试基地主要高噪设备为各类风机、污水光等,通过减震降噪、墙体隔声后可实现厂界达标。

## 4、固体废物

# 3.5. 现有项目存在的环境问题及"以新带老","发展"

现场勘查时,现有项目正在建设中,对前已基本完成建设,经对比发现:实际在建内容与环评设计有所变化。调整原因是为成于后期中试项目的入驻,建设单位对部分构筑物做了适应性改造,主要体现在 1#~8#中减微、综合楼及中控室楼层数及建筑面积的调整;同时,对原设计的储运工程、公辅工程从从保工程全部取消建设,由后期环评结合拟入驻的中试项目重新进行设计施工,并对整体,试孵化园的平面布局进行优化,整体变动内容未超出用地红线。

经对照《关于的发〈污染影响类建设项目重大变动清单(试行)〉》(环办环评函〔2020〕 688 号),从文动内容不属于重大变动。

现有项目现场无其他环境问题。

**次**有项目验收工作实施计划:现有项目已建成,但未投入使用,拟与后续的扩建项目(即次)市襟江投资有限公司泰兴经济开发区中试孵化产业园项目)统一开展验收工作。

## 4. 拟建项目工程分析

## 4.1. 项目概况

#### 4.1.1. 基本情况

项目名称: 泰兴经济开发区中试孵化产业园项目;

建设地点: 江苏省泰兴经济开发区锦江路南侧、院士路西侧;

建设单位: 泰兴市襟江投资有限公司:

国民行业代码:工程和技术研究和试验发展(M7320);

项目性质: 改扩建;

占地面积: 108.1 亩,绿化面积约 14400m²,绿化率 20%;

投资总额:投资为50000万元,环保投资5000万元,环保投资占约投资的10%;

劳动定员:中试基地配套工作人员数量约为80人,单个入驻水流流行劳动定员20人;

模型。但我想到

工作制度: 年工作天数 300 天, 每天工作 24h。

投产日期:建设周期为24个月,预计2027年年底投资使用。

# 4.1.2. 主体工程及规模

## 1、建设内容

根据备案文件,本次主要为建设中试厂发展配套公用工程和辅助设施,具体包括综合运维楼、中心控制室、门卫、甲类中试平台、综合仓库、甲类仓库、危废暂存库、动力车间(含10kV变电所、空压站、冷冻站、液流站等)、综合水站(含消防泵房、循环水泵房、纯水房等)、污水预处理场(含污水处理新助用房)、初期雨水及事故池、雨水监测间、废气处理(RTO)、中试框架、地面火炬和管风筝,总建筑面积 42650 平方米。新增构筑物均已按《建筑设计防火规范》(GB 50016-2004)进行设计。

情况说明: ① 试楼(合计 8 座)、综合运维楼、中心控制室依托现有,不涉及新增;② 中试框架不 次 次评价范围内; 地面火炬为后期预留的废气应急处置装置,本次不建设。

## 2、设设规模

人格据备案文件,本项目依托现有的 8 座中试楼,设置 5 类产业中试方向,分别为:①高端材料产业、②生物制造产业、③专用化学品产业、④电子化学品及半导体材料产业、⑤功能性材料产业。

核定的5类产业中试方向最大中试规模见下表。

表 4.1-1	中试孵化园5类产业中试方向最大研发规模一览表	ź
1C T-1		•

序号	产业中试方向	主要中试内容	最大中试规模(t/a)
1	高端新材料产业	聚酯、生物基氨纶、生物基尼龙、聚醚醚酮、聚 甲基丙烯酸甲酯、聚芳醚、聚酰亚胺系列	4000
2	生物制造产业	发酵法生物大分子、生物基化学品系列	1000
3	专用化学品产业	无醛胶黏剂、沥青再生剂、含氟功能化学品系列	2000
4	电子化学品及半导体材 料产业	光刻胶树脂、湿电子化学品系列	1000
5	功能性材料产业	先进催化剂、固态电解质系列	1000

注: 生物制造产业中试方向不涉及 P3、P4 生物安全实验室中试项目的引进。

本项目(即中试孵化产业园)可为以上领域研发成果中试产业化提供孵化器**水**科技平台,实现价值链向上延伸、向下拓展,完善产业转化链,弥补科研发展和市场需**以**间的短板。

拟建项目依托的中试楼建筑物技术参数见表 4.1-2 及表 4.1-3。

表 4.1-2 拟建项目依托中试楼建筑技术参数 3

序号	建筑物名称	火灾类别	层数	建筑高度(加)	建筑面积(m²)
1	1#中试楼	甲类	2F	(4) Y	2032
2	2#中试楼	甲类	2F	2.8	2032
3	3#中试楼	甲类	2F	22.8	2032
4	4#中试楼	甲类	1F	17.7	1050
5	5#中试楼	甲类	2F*	22.8	2675
6	6#中试楼	甲类	3F, V	22.8	4013
7	7#中试楼	甲类	3/8/1/	22.8	3014
8	8#中试楼	甲类	~~~~	22.8	3014

表 4.1-3	中学版	√周骨十可 λ	驻项目数量汇总表
/X 4.1-J		1. DUI BV /\ PI /\	3T 20 0 70 FB 31 355 375

中试楼编号	楼层数	防火分区设置	可入驻项目数量		
 1#中试楼	5×17	1楼: 1个	1个		
1#中 风佞	-4.7	2 楼: 1 个	1个		
2#中试楼	2F	1楼:1个	1个		
2# 中	2F	2楼:1个	1 个		
	2F	1楼:1个	1 个		
		2 楼: 1 个	1个		
4#中试楼	1F	1个	1 个		
5#中方	2F	1 楼: 2 个	2 个		
	21	2 楼: 2 个	2 个		
-182	3F	1 楼: 2 个	2 个		
<b>火</b> 华#中试楼		2 楼: 1 个	1 个		
<u> </u>		3 楼: 1 个	1 个		
	3F	1楼:1个	1个		
7#中试楼		2 楼: 1 个	1个		
		3 楼: 1 个	1个		
	3F	1楼:1个	1个		
8#中试楼		2 楼: 1 个	1 个		
		3 楼: 1 个	1个		
合计		/	21 个		

每座中试楼分为 1~4 个防火分区,对应 1~4 个中试区域,合计有 21 个防火分区,各个区 域相互之间独立运作, 互不影响。孵化园会预留 30%的空位(约7个), 用于安置国家或地方 紧急或"卡脖子"中试项目以及解决中试项目该退未退时新项目的入驻安置问题。

入驻项目生产过程仍处于中试研发阶段,并没有形成成熟的生产工艺路线,中试装置设备 规格小于同类产业化项目设备规格,所用原辅材料的年消耗量也远小于同类产业化项目原辅林 料的年消耗量。

本项目中试过程主要用于探索中试工艺技术和工艺参数,中试产物部分(约80%) 目标用户或第三方检测单位进行试用和评价(接纳单位负责对接收样品进行处置 (约 20%) 暂按照危险废物进行管理。

原则上基地内单个中试项目自开始建设到投入运行周期不得超过 情况下可向原

## 表 4.1-4 中试孵化园首批拟入驻中试项目清单

序号	入驻企业名称	中试项目名称	产业中试方向	中试内容	中试规模	合计	核定规模	备注		
1					Σ,					
2				×				均未		
3				XX				超出 基地		
4				100,2				^{蚕地} 核定		
5				A STATE OF THE STA				的总		
6				/XXX				规模		
7				XX.				,,,,,,,,		

一定的入驻容景。如有后续项目入驻,应按照相关文件要求,单独履行 根据表 4.1-4 可知, 在接收上述 7 家中试企业后, 中试基地仍有 环保手续。

# 4.1.3. 公辅及环保工程建设内容

## 1、给排水系统

(1)给水

供水,可满足本项目及入驻项目的建设、运营、消防等所需供水的要求。 本项目厂址范围内供水管网已经形成,由开发区供水管网络

- ①中试基地公辅工程:生活用水、纯水制备用水、纯水制备反冲洗用水、循环冷却系统补水、废气净化系统补水、绿化用水;
- ②中试基地过程分析室:实验用水、仪器清洗用水、厂废气净化系统补水;
- ③中试楼区域:入驻企业职工生活用水、低温水系统补水、工艺用水、设备清洗用水(含中试失败清洗用水)、设备检修用水、地面清利水、废气净化系统补水。 洗用水、废气净化系统补水。

#### (2)排水

项目实行"雨污分流、清污分流"的排水体制,基地设有一个排水口及一个雨水排放口,均依托现有。

- ①中试基地公辅工程:生活污水、纯水制备浓水、纯水制备反冲洗废水、循环冷却系统溢流水、废气处理废水、初期雨水、蒸汽冷凝水:
  - ②中试基地过程分析室:实验废水、仪器清洗废水、废气处理废水;
- ③中试楼区域:入驻企业职工生活污水、低温水系统强排水、工艺废水、设备清洗废水(含中试失败清洗废水)、设备检修废水、地面清洗废水、废气处理废水等。

上述废水经预处理达标后接管接管开发区工业污水厂。

### 2、供电

本项目用电本工程由外部引入两路 10KV 电源,在厂区东北面和 10KV 动力车间开关站,本期工程设 10/0.4kV 2500KVA 干式变压器 2 台供应厂区所有 用电,10kV 采用单母线分段接线,0.4kV 采用单母线分段接线。根据基地运行情况, 从 用电负荷按三级负荷考虑。配置的变压器可满足用电需求。

#### 3、蒸汽

基地使用的蒸汽由开发区供热管线统一类说,最大供热负荷为 15t/h(10.8 万 t/a),基地及中试项目主要利用蒸汽进行温度的控制、本次以 7 个拟入驻项目开展蒸汽供给需求分析。

	表 4.1-5×4	蒸汽用量统证	十表(t/a)	
供热量	XX"	消耗量		余量
基地最大供热量	中读项目	耗气量	合计	木里
108000			5100	102900

**注**表可知:基地供热能力能够满足本次 7 个拟入驻中试项目的需求。

表 4.1-5(2)

_	<i>√</i> k. \ ∕		7C 111 0	(=) millimax (da)		
بر ک	K-1/-	进	项	出项		
<b>\</b>	蒸	汽	108000	冷凝废水	97200	
' _				蒸发损耗	10800	
	合	计	108000	/	108000	

蒸汽平衡表 (t/a)

## 4、压缩空气

本本项目共设置3台无油螺杆式空气压缩机,其中2台为工频、1台变频空压机,总制气

量为 1980m³/h; 本次以 7 个拟入驻项目开展压缩空气供给需求分析。

表 4.1-6 压缩空气用量统计表 (m³/h)

供热量		消耗量		余量
基地最大供气量	中试项目	耗气量	合计	示里 
				William .
				1447
1980			533	1447
				×>

根据上表可知:基地压缩空气供给能力能够满足本次7个拟入驻中试项具产需求。

## 5、纯水

本项目新增设纯水机组 1 台,最大制水能力为 5m³/h(3.6 万 t/a 本次以 7 个拟入驻项目开展压缩空气供给需求分析。

表 4.1-7 纯水用量统计表

	* ·		· · · · · · · · · · · · · · · · · · ·	
供热量		消耗量	<b>(</b> \(\sigma\)'	余量
基地最大供水量	中试项目	耗水量 1	合计	本里
36000	- <del>-</del>	K-IIIII KI	11796	24204

根据上表可知:基地纯水供给能力能够满足本次7个拟入驻中试项目的需求。

# 6、冷却水回用系统

表 4.1-8 冷却循环水用量统计表(t/h)

供热量		余量		
基地最大循环水量	中试项目	循环水量	合计	<b>小里</b>
1000			430	570

			<i>(</i> , )
		泰兴市襟江投资有限公司泰兴经济开发区中试孵化产业园项目环境影响报	告书
9,	运输工程概况		
原 辅料。	<b>拥料</b> 或中试产品 <b>进</b> 过汽皮	表 4.1-4 拟建项目公辅及环保工程组成一览表规模	医拖车或防爆叉车到中试基地仓储区领取
		表 4.1-4 拟建项目公辅及环保工程组成一览表	<u> </u>
类型	工程名称	规模	备注
	1#甲类仓库		
	2#甲类仓库		
贮运	3#甲类仓库	<b>△</b>	
工程	综合仓库 (丙类)		
,,	罐区		
	物料转移		
	综合运维楼		
	中心控制室	×	
	动力车间	×175°	
	综合水站	$\Delta^{\otimes}$	
公辅	供水系统		
工程	排水系统	<del>\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</del>	
	D 17111741.76	<del></del>	
	压缩空气系统		
	供气系统		
	供电系统 污水站		
	废水		
环保	7		
工程		XXV	
	废气 废 PEEK -		
	气棕榈油基	À.	

	PMMA				
	催化剂			(1/1)	
	生物基尼龙			×	
	PAE				
	FDCA 等			xQV	
	其他				
	过程分析室				
	危废库			, Zila s	
	污水站			· 🌾	
	食堂			<b>⊘</b> ′	
噪声				)	
	生活垃圾				
固废	一般工业废物				
	危险废物				
环境 风险	事故池		THE PARTY OF THE P		
			表 4.1-5 拟建筑 施库设置情况一	览表	
2000年	,	位置	特殊		库容

#### 4.1.4. 依托工程

根据设计并结合现场勘察,为便于后期中试项目入驻,现有工程在建设过程中只保留了8 栋中试楼及综合运维楼、中心控制室,其他全部弃建,并由本次重新设计和建设,因此拟建项 目依托工程主要为8栋中试楼、综合运维楼及中心控制室。

#### 4.1.5. 平面布局

结合平面布局图,整个中试基地可分为中试区、管理服务区、动力辅助区、仓储区及场景区五大区块,详见图 4.1-1。
(1)中试区
该区域包含 8 座中试楼,位于基地中部,建筑物布局 中华四 "" 处理区五大区块,详见图 4.1-1。

(GB/T 44710-2024) 等文件进行设计,中试方向包括高性能树脂 高端专用化学品、精细化学品、功能性材料等六大类型。

#### (2)管理服务区

该区域包含综合运维楼、中心控制室,是整个中试基 、脑",位于基地北侧,视野开 阔,充分体现整个基地智能化、集约化的气质与形象 食堂等,中心控制室则对中试区实施远程调整

# (3)动力辅助区

**冰**放水池,整体位于中试区北侧、管理服务区南侧,动 该区域包括动力车间、综合水站、 力车间内设置总变电站、冷冻站、必定机室、机修间及五金库等,综合水站内设置消防泵房、 消防水池区域设置有消防水池及循环水池。

#### (4)仓储区

库、3 座甲类仓库和 1 做甲类危废暂存库,该区域位于基地的西北 该区域包含1

含废气集中处理装置及污水处理站,整体位于基地的西南侧,主要为入驻企业提 废水的集中处置。

## 周边环境概况

根据现场勘查,基地东侧为拟建的江苏正博诺科技发展有限公司地块(在建)、基地南侧 为栗田工业(泰兴)水处理有限公司及江苏鸣川新材料有限公司、西侧为空地、北侧为锦江路 (隔路为联泓惠生(江苏)新材料有限公司),拟建项目周边 500m 环境概况见图 4.1-2。

#### 4.1.7. 中试孵化园管理要求

结合《关于印发泰州市化工中试基地和中试项目管理办法(试行)的通知》(泰工信规(2025) THE WILLIAM TO SEE THE WAR THE 1号),入驻企业中试项目准入管理、运行及停运要求如下:

## 4.1.7.1. 中试项目管理要求

- 4.1.7.2. 中试项目运行要求
- 4.1.7.3. 入驻项目补充管理要求
- 4.1.7.4. 中试基地责任划分

## 4.2. 项目工程内容

产业、②生物制造产业、③专用 化学品产业、④电子化学品及半导体材料产业、⑤文能性材料产业,本次拟针对入驻的7个中试项目开展工程分析。
4.3. *****中试项目工程分析
4.3.1. 位置布设
4.3.2. 中试目的
4.3.3. 中试规模
4.3.4. 主要原辅料

- 3.9.1. 冷凝效率核算
- 4.3.9.2. 总物料平衡
- 4.3.9.3. 单效蒸发平衡
- 4.3.9.4. 溶剂平衡

- 4.3.9.5. 工艺水平衡
- 4.3.10. 污染源分析

# 4.4. *****中试项目工程分析

- 4.4.1. 位置布设

A) AT WE THE WAR WE WE THE WAR WE WAS A STATE OF THE STAT

# 4.5. *****中试项目工程分析

- 4.5.1. 位置布设

# 4.6. *****中试项目工程分析

- 4.6.1. 位置布设

# 4.7. *****中试项目工程分析

- 4.7.1. 位置布设

A分析 A Man A

# 4.8. *****中试项目工程分析

- 4.8.1. 位置布设

# 4.9. *****中试项目工程分析

- 4.9.1. 位置布设

# 4.10. 过程分析室工程分析

#### 4.10.1. 功能介绍

中试基地拟在综合运维楼统一建设过程分析室,设置有24个分析室,其中3个为试剂室 (由中试基地统一管理),剩余21个为入驻企业提供中试过程分析检测场地,实验器材由入 驻企业自行购置。

说明:①过程分析室仅为入驻的中试企业提供中试过程分析检测服务,不涉及研发、设合 艺试验,且不单独引进小试企业;②生物医药类企业对中试过程开展八七二 物实验,则应按照实验完生型 成工艺试验,且不单独引进小试企业;②生物医药类企业对中试过程开展分析检测时 如涉及 微生物实验,则应按照实验室生物安全防护等级,配置相应的灭活/灭菌设备(是体以其入驻时获批的环评文件为准)。
4.10.2. 实验设备配置情况
过程分析室涉及的典型生产设备如下:

表 4.10-1 过程分析室试验设备

衣 4.10-1 过住分价至低短权备人							
名称	规格						
气相色谱仪	GC-20146890						
液相色谱仪	Agijent7890LC-20A						
电子天平	BT125D/十万分之一						
高压色谱制备配件	/						
滴定仪	794 型						
紫外可见分光光度表	UV-2600						
紫外分光光	CF-G-3-010G						
蒸发光散射检测器	ELSD-LTII						
马尔文激光粒度仪	MS-2000						
<b>沙</b> 热分析仪	/						
<b>生</b> 红外光谱仪	NICOLET IS10						
**************************************							
多参数测试仪							
熔点仪	WRR						
水浴恒温振荡器	SHA-BA						
恒温恒湿箱	CLIMACELL1222						
离心机	TGL-16C						
超声波清洗机	SK7200H						
精密台式 pH 计	3-star						
偏光显微镜	XPL-330V						
试剂冷藏箱	HTY-610						
旋转蒸发器	/						
总有机碳测定仪	/						
箱式电阻炉	DZF-6020/CS101-2ABN						
真空干燥箱	DFY-10/40						
	名称 「有相色谱仪 液相色谱仪 电子天平 高压色谱制备配件 滴定仪 紫外可见分光光度。 紫外可见分光光度。 紫外分光光度人 大力 蒸发光数射透测器 马石文散光粒度仪 一点 然分析仪 红外光谱仪 红外光谱仪 多参数测试仪 熔点仪 水浴恒温振荡器 恒温恒湿箱 离心机 超声波清洗机 精密台式 pH 计 偏光显微镜 试剂冷藏箱 旋转蒸发器 总有机碳测定仪 箱式电阻炉						

电热恒温鼓风干燥箱 YC-	-015
红外光谱仪 SD	0-55
数控超声波清洗器 JY92	2-11N
数控超级水浴槽	/
洁净工作台 BD-S	S500
烘箱 00ML/MIN	单蹦比例阀 🔷
高压釜	7
制冰机 DF-1	101S
超声波细胞破碎仪 D2Pl	haser
全自动实验室量热仪 DZF-6020/C	CS101-2ABN
恒温培养振荡仪 DFY-	10/40
冷冻干燥机    GS	HAND I

# 4.10.3. 过程分析室原辅料使用情况

过程分析室涉及的典型原辅料情况如下:

表 4.10-2(1) 过程分析室原辅料使用增加 览表

	典型原辅料名称	规格 (%)	在田豊(4)	最大存储量(t)	存储位置
	兴至尔州科石州	<b>分児付合 ( 70</b> )	年用量(t)	一 取八行帕里(1)	1十1年7年1
1			11/2		_
2			/v \\		
3			13		
4					
5		, & X	All.		
6		, & ``			
7		-(+)			
8		XXX			
9		4.			试剂间
10	.2	<i>(1)</i>			
11	>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<b>Y</b>			
12	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
13	(A)				
14	117				
15	A PLIV				
16	<b>16</b> ),				
175	<b>\$</b> >				

	表 4.10-2(1) 过程分析室试剂理化性质一览表						
	名称	分子式/ 分子量	CAS		理化性质	燃烧爆 炸性	毒理毒性
1							
2							
_3							
4							
_5							ZŽ. YV
6							
_7_							<u> </u>
8							**************************************
9							
1							A CONTRACTOR OF THE PARTY OF TH
0							
1							in a second
_1						~\ng{\kappa}'	1
1						<b>*</b>	
1						<b>*</b>	
3							

# (1)气相色谱分析

4.10.4. 过程分析室检测流程简介

气相色谱分析主要原理是:在大部分处测中,将被检测物质直接以特制针筒打入气相色谱分析仪,被检测物质在仪器里被加热或气态,经色谱柱后,各物质逐渐分开以达到分离的目的,使得被检测样品中不同含量的各物质以一定的保留时间和一定的峰形在分析仪的显示屏里得以表达,在相同检测条件下之间一物质在同一设备中的保留时间基本相同,含量的多少决定峰形的大小。以针筒形式和人到仪器里的剂量很少,一般在微升级,在分析仪里加热成气态,并最终由仪器真空泵如排至大楼通风排气系统。加热方式是氢气焰加热,使用到一定量的氢气和氦气,在精密和加热室里燃烧,产生少量的水蒸气。

因此在《相色谱分析过程中,产生的废气量很小,少数定量分析中需配制标准溶液,会产生少数液。

#### (2)液相色谱分析

液相色谱分析主要原理是:将样品溶解在一定量的溶剂中配成溶液,由自动进样器进样,由一定配比的有机溶剂组成的流动相将样品溶液输送,经色谱柱后分离,使得被检测样品中不同含量的各物质以一定的保留时间和一定的峰形在分析仪的显示屏里得以表达。液相色谱用于做流动相的溶剂使用量较大,流速在 1~5ml/min 之间。液相色谱分析主要产生流动相废液。

# (3)化学分析

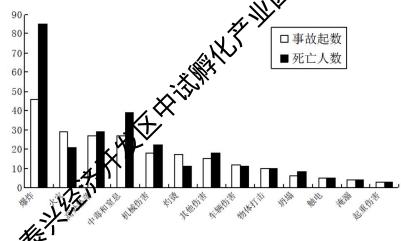
该分析室主要对配备好的试剂、样品进行滴定、点板等化学分析实验,一般不再对样品进 行加热反应等过程。

- 4.10.5. 污染源源强核算
- 4.10.5.1.废气污染源分析
- 4.10.5.2. 废水污染源分析
- 4.10.5.3. 噪声污染源分析
- 4.10.5.4. 固体废物分析
- 4.11. 中试基地自身运营工程分析
- 4.11.1. 废水
- 4.11.2. 废气
- 4.11.3. 噪声
- 4.11.4. 固废
- 4.12. 污染物产排情况汇总
- 4.12.1. 废水
- 4.12.2. 废气
- 4.12.3. 固废
- 4.13. 非正常工况分析
- 4.14. 环境风险识别
- 4.14.1. 风险识别内容
- 包括主要原辅材料、燃料、中间产品、副产品、最终产品、污染物、
- 险性识别,包括主要生产装置、储运设施、公用工程和辅助生产设施,以

物质向环境转移的途径识别,包括分析危险物质特性及可能的环境风险类型,识 危险物质影响环境的途径,分析可能影响的环境敏感目标。

- 4.14.2. 风险识别
- 4.14.2.1. 资料准备和收集

本次评价将参照石油化工行业事故统计资料对本项目可能发生的事故进行分析。


1、化工行业事故资料统计

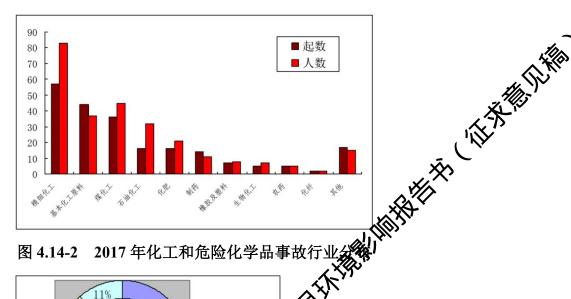
FUR THIS WAR WILLIAM TO THE WAR WILLIAM TO THE WAR WILLIAM TO THE WAR WILLIAM TO THE WAR WAR THE WAR WAS A WAR TO THE WAR THE

根据《2017年全国化工和危险化学品事故分析报告》,2017年全国共发生化工事故219起、死亡266人。其中较大事故15起、死亡57人;重大事故2起、死亡20人;未发生特别重大事故。

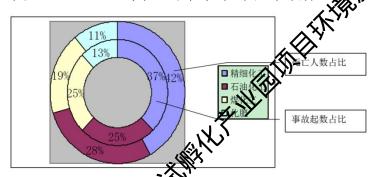
#### (1)类型分布

其中爆炸事故 46 起、死亡 85 人,分别占 21.1%和 32.0%,其中容器爆炸事故 25 起、死亡 32 人,分别占 11.5%和 12.0%,其它爆炸事故 21 起、死亡 53 人,分别占 9.6%和 19.9%,火灾事故 29 起、死亡 21 人,分别占 13.3%和 7.9%;中毒和窒息事故 27 起、39 人 分别占 12.3%和 14.7%;高处坠落事故 27 起、死亡 29 人,分别占 12.4%和 10.9%;机械伤害事故 18起、死亡 22 人,分别占 8.3%和 8.3%;灼烫事故 17起、死亡 11 人,分别之 8%和 4.1%;其他伤害事故 15起、死亡 18 人,分别占 6.9%和 6.8%;车辆伤害事故 12 起、死亡 11 人,分别占 5.5%和 4.1%;物体打击事故 10 起、死亡 10 人,分别占 4.6%起 8%;坍塌事故 6起、死亡 8 人,分别占 2.8%和 3.0%;触电事故 5起、死亡 5人,分别占 2.3%和 1.9%;淹溺事故 4起、死亡 4人,分别占 1.8%和 1.5%;起重伤害事故 3 起 8 允亡 3 人,分别占 1.4%和 1.1%。




4.14-1 2017 年化工和危险化学品事故类型分布情况

从事故类对的分布情况看,爆炸事故起数最多,其次是火灾、中毒和窒息及高处坠落事故,爆炸事故之间的死亡人数最多,其次是中毒和窒息、高处坠落和机械伤害事故,共计占到全年事故之间数和死亡总人数的 59.1%和 65.9%。因此,这几类事故是化工和危险化学品事故的防


# (2)行业分布

精细化工行业发生事故 57 起、死亡 83 人;基本化学原料制造业发生事故 44 起、死亡 37 人;煤化工行业发生事故 36 起、死亡 45 人;石油化工行业发生事故 16 起、死亡 32 人;化肥行业发生事故 16 起、死亡 21 人;制药行业发生事故 14 起、死亡 11 人;橡胶及塑料制造业发

生事故7起、死亡8人;生物化工行业发生事故5起、死亡7人;农药行业发生事故5起、死 亡5人; 化纤行业发生事故2起、死亡2人; 其它行业发生事故17起、死亡15人。



2017年化工和危险化学品事故行业



2017 文文大及重大事故行业分布图 图 4.14-3

其次是基本化工原料和煤化工,合计占到事故总起 从行业来看,精细化工行业事, 数和死亡总人数的 62.6%和 62% **X** 较大及重大事故中,精细化工、石油化工和煤化工行业事故 分列前三位,合计占总起数和总人数的87%和89%。17起较大及重大事故中,精细化工行业 L 死亡 10 人, 较大事故 5 起、死亡 21 人, 石油化工行业发生重大事 故1起、死亡10人 较大事故3起、死亡11人; 煤化工行业发生较大事故4起、死亡14人; 事故2起、死亡8人;基本化学原料制造业发生较大事故1起、死亡3人。 石油化工和煤化工是防范遏制化工和危险化学品重特大事故的重点。

17年发生的17起较大及重大事故中,涉及动火作业的事故有4起、死亡14人,涉及 受限空间作业的事故有 2 起、死亡 6 人, 合计 6 起、20 人, 分别占较大及重大事故的 35.3% 和 26.0%; 涉及检维修作业的事故有 8 起、死亡 28 人,分别占较大及重大事故的 47.0%和 36.4%。

从国内外化工厂事故调查资料可知,化工厂生产过程中的各个环节均有可能发生重大事故, 主要的事故类型有装置泄漏、爆炸、包装桶泄漏着火、仓库着火等。类比相关的事故发生后,

对周围环境的人员伤亡影响比较大,因此,项目运行过程中,必须对危险化学品的使用、储运等加强管理,认真落实各项危险化学品泄漏的预防和处置措施,制定可操作的事故应急预案,将危险品事故降低到最低限度,有效减少事故风险。

- 2、国内外同类企业突发环境事件资料
- (1)危险废物仓库火灾爆炸

2019年3月21日14时,位于江苏省盐城市响水县生态化工园区的天嘉宜化工有限 发生特别重大爆炸事故,造成78人死亡、76人重伤,640人住院治疗,直接经济损失19.86 亿元。

事故的直接原因是天嘉宜公司旧固废库内长期违法贮存的硝化废料持续 热升温导致自燃,燃烧引发爆炸。事故调查组认定,天嘉宜公司无视国家环境保护和发生生产法律法规,刻意瞒报、违法贮存、违法处置硝化废料,安全环保管理混乱,日常发生弄虚作假,固废仓库等工程未批先建。

(2)危险废物溢出气泄漏

2017年12月12日,位于烟台开发区的烟台鑫广大公司危险废物处理中心,工人在卸料取样过程中,被溢出气体熏倒,造成5人死亡、2人受伤。

事故原因为:物料储罐发生破损,导致疾炎气逸散,工作人员未做好防护措施,导致吸入挥发气,造成人员伤亡。

(3)有害气体中毒事故

2019年7月22日,河北省外来县长城生物化学工程有限公司在组织清理厂区污水沉淀池时,发生有害气体中毒事业。截至2019年7月23日22时,该事故已经造成5人死亡,5人受伤,直接经济损失。6万元。

事故原因为一个作业人员违反安全技术规程,违章进行清淤作业,淤泥中的硫化氢等有毒气体在抽排人业和外力搅动下释放逸出,受彩钢房封闭限制,有毒气体不断积聚,人体过量吸入后通过伤亡。现场人员在情况不明且未配备应急救援设备设施情况下盲目施救,造成事故扩大人企业未严格落实安全生产主体责任,风险管控和隐患排查不到位,应急处置能力低下。

(4)生产装置泄漏爆炸事故

1998年8月5日,安徽省芜湖某化学有限公司聚氯乙烯厂,因氯乙烯单体泄漏发生爆炸事故,造成5人死亡、4人重伤、3人轻伤,直接经济损失84.58万元。

事故原因为:①该厂交接班时,对于不能使用的东边 2 号单体泵交代不清;当班工人误操作打开东边 2 号单体泵进料球阀,造成单体泄漏;②发现单体泄漏后没有采取紧急有效的处理

措施,致使泄漏量越来越大,遇点火源后发生爆炸燃烧,附近存在点火源(非防爆电气火花或过热可能性最大)。

#### (5)生产车间泄漏爆炸事故

2012年4月14日,内蒙古三爱富万豪氟化工有限公司 VDF (偏氟乙烯) 生产车间发生爆炸事故,造成1人死亡,车间、设备严重损毁。

事故原因为:①脱气塔和精馏塔等设备持续超压运行,疲劳作业,导致发生容器爆炸。 工艺技术操作参数与设备选型不匹配;③生产企业管理不严格,工人违章操作,导致脱气塔、 精馏塔频繁超压运行,未做及时纠正;④事故救援时,企业消防用水压力不足,影响了救援; ⑤生产企业的本质安全水平不高,作业区气体监测报警系统失准,未及时候等。

### (6)危化品库房火灾爆炸

2015年8月12日,位于天津市滨海新区天津港的瑞海国际物流,限公司危险品仓库发生特别重大火灾爆炸事故,造成165人遇难、8人失踪、798人。坊,造成直接经济损失68.66亿元。

事故原因为:①瑞海公司危险品仓库运抵区南侧集。箱内的硝化棉由于湿润剂散失出现局部干燥,在高温(天气)等因素的作用下加速分配放热,积热自燃,引起相邻集装箱内的硝化棉和其他危险化学品长时间大面积燃烧,导致难放于运抵区的硝酸铵等危险化学品发生爆炸;②瑞海公司违法违规经营和储存危险货物、安全管理极其混乱,未履行安全生产主体责任,致使大量安全隐患长期存在;③严重运觉荷经营、超量存储;④违规混存、超高堆码危险货物;⑤违规开展拆箱、搬运、装卸等作业;⑥未按要求进行重大危险源登记备案;⑦安全生产教育培训严重缺失;⑧未按规范规定应急预案并组织演练。

# (7)非法进行未经处理的生产内容

2025年3月1日,江苏省泰州市高港区惠利生物科技有限公司发生爆炸事故,造成8人死亡、4人受益经初步调查,事故企业在现有中试车间非法试验生产2-碘酰基苯甲酸,在产品晾干收集过程中发生爆炸,事故原因正在进一步调查中。

## 4.14.2.2.物质危险性识别

### 4.14.2.3.生产系统危险性识别

生产系统的危险有害因素分析是基于工艺过程危险有害因素分析,综合本项目试验设施自 身固有的危险有害因素而做出的。从企业主要试验装置、贮运系统、公用工程系统及辅助设施 等进行风险识别。 类, City Man

# (1)储存及生产单元潜在危险性识别

- ①操作系统、辅助设施等自身的原因,如设计失误、生产或存储设施、管线破损等;
- ②操作技术不熟练,操作失误:
- ③发生自然灾害,如地震、台风、海啸等。

# (2)环保工程潜在危险性识别

- ①废气处理系统出现故障, 未经处理的废气排入大气环境中;
- ②生产过程中由于设备老化、腐蚀、失误操作等原因造成车间废
- ③对废气治理措施疏于管理,使废气治理措施处理效率降低选择 气浓度超标。
- ④厂内突然停电,废气处理系统停止工作,致使废气不能,到及时处理而造成事故排放。 根据厂区平面布置功能区划,结合物质危险性识别 划分为12个危险单元,详见 表 4.14-1, 危险物质最大存在量见表 2.3-8。

表 4.14-1 本项目危险单元划分结果表

		· · · · · · · · · · · · · · · · · · ·	
序号	危险单元 😮	序号	危险单元
1	1#中试楼	<b>7</b>	甲类仓库(含气瓶间)
2	2#中试楼 🗸 🤻	8	过程分析室
3	4#中试楼	9	危废库
4	5#中心楼	10	污水站
5	7# 试楼	11	RTO 焚烧系统区
6	<b>※</b> 中试楼	12	/

说明: 3#及6#中试修本次未有企业入驻,暂不划入危险单元。

本项目中试系统危险性识别详见表 4.8-2。

# 表 4.14-2 本项目中试系统危险性识别

序号	危险单元	危险物质	危险性	存在条件、转化为事故的触发因素	是否为重点风险源
1	1#中试楼			操作朱 设备故障,导致物料泄漏;物料泄漏后遇明火	是
2	2#中试楼				是
3	3#中试楼			, AX	是
4	4#中试楼		火灾、爆炸、	操作朱 设备故障,导致物料泄漏;	是
5	5#中试楼		中毒	物料泄漏后遇明火	是
6	6#中试楼			Ess.	
7	7#中试楼				是
8	8#中试楼		~(i)-v		是
9	甲类仓库		火火爆炸、	物料泄漏后遇明火	是
10	过程分析室	/N	中毒	初杆但個戶戶	否
11	危废库	7,7	火灾、中毒	暂存的危废发生泄漏事故	是
12	污水站	H H H H H H H H H H H H H H H H H H H	地表水、地下 水、土壤污染	1分 以 カト+中 7分 取4 7台 1人	是
13	RTO 焚烧系统	\&\\\	大气污染	废气处理设施故障	否

# 4.14.2.4.危险物质向环境转移的途径识别

根据可能发生突发环境事件的情况下,污染物的转移途径如下表。

表 4.14-3 事故污染物转移途径

类型	事故位置	式	大气	排水系统	土壤、地下
		气态	扩散	/	
AII NE	中试装置		/	漫流	渗透、吸
泄漏	储存系统	液态	/	试验废水、清下水、雨水、消 防废水	渗透
		毒物蒸发	扩散	/	~ <u>~</u> ~~
火灾引发的次	中试装置	烟雾	扩散	/	
代	中 _{风表且} 储存系统	伴生毒物	扩散	/	<del>,</del>
<b>什生仍</b> 亲	個什尔纽	消防废水	/	试验废水、清下水、雨水、消 防废水	渗透、吸
		毒物逸散	扩散	N/S/S	/
爆炸引发的次	中试装置	伴生毒物	扩散		/
伴生污染	储存系统	消防废水	/	试验废水 有下水、雨水、消 防废水	渗透、吸
TT 1 \$ 13 11 11 11 12 4 4 5		气态	扩散	1	/
环境风险防控 设施失灵或非	非	液态		试验废水、清下水、雨水、消 防废水	渗透、吸
正常操作		固态	-X/4	/	渗透、吸
	<b>北</b> 安壮 罕	气态	<b>大</b> 扩散	/	/
非正常工况	生产装置 储存系统	液态	/	试验废水、清下水、雨水、消 防废水	渗透、吸
)	污水处理站	1	/	试验废水	渗透、吸
污染治理设施	废气处理系统。	废气	扩散	/	/
非正常运行	危废库入	固废	/	/	渗透、吸
	XX I	热辐射	扩散	/	/
	17/	毒物蒸发	扩散	/	/
	一般学系统 人NZ	烟雾	扩散	/	/
<b>宁岭</b> 系统 <b>地</b>	\$\$\tag{\tau}	伴生毒物	扩散	/	/
<b>色制</b> 示 乳 取 ・		气态	扩散	/	/
运输系统故 <b>人</b> 4.14.2.5.风险 本项目环	输送系统	液态	/	试验废水、清下水、雨水、消 防废水	/
x-1>		固态	/	/	渗透、吸

# 表 4.14-4 本项目环境风险识别结果

			74 1 77 7 7 7 7 7 7	1744 - H > 1 +	
序号	危险单元	风险源	环境风险类型	环境影响途径	(可能受影响的环境敏感目标
1	1#中试楼	试验装置			
2	2#中试楼	试验装置		大气、地表水、地下水、地下水、地下水、地下水、	
3	4#中试楼	试验装置	] · 泄漏、火灾、爆炸及引发的次/伴生污染		<b>-</b> *
4	5#中试楼	试验装置	/世///////////////////////////////////	大气、地表水、火火、	  周边居民、芦坝港、长江、土壤、地下水等
5	7#中试楼	试验装置		地下	同型店民、尸坝佬、 <u>下</u> 红、土壌、地下小寺 
6	8#中试楼	试验装置		XXX	
7	甲类仓库	原料包装桶/袋	泄漏、火灾、爆炸及引发的次/伴生污染	$\langle \hat{\lambda}_{\lambda} \rangle$	
8	过程分析室	试验装置	泄漏、火灾、爆炸及引发的次/伴生污染	W.	
9	危废库	危废桶、袋	泄漏、火灾及引发的次/伴生污染	土壤、地下水	/
10	污水站	废水处理装置	污水站泄漏	地表水、土壤、地下水	芦坝港、长江、土壤、地下水等
11	RTO 焚烧系统	废气处理装置	废气处理设施故障	大气	周边居民

#### 4.15. 环境风险事故情形分析

### 4.15.1. 风险事故情形设定

#### 4.15.1.1.风险事故情形设定原则

- 1、同一种危险物质可能有多种环境风险类型。风险事故情形应包括危险物质泄漏,以及火灾、爆炸等引发的伴生/次生污染物排放情形。对不同环境要素产生影响的风险事故情形应分别进行设定。
- 2、对于火灾、爆炸事故,需将事故中未完全燃烧的危险物质在高温下迅速挥发释放至大 气,以及燃烧过程中产生的伴生/次生污染物对环境的影响作为风险事故情形设定的内容。
- 4、风险事故情形设定的不确定性与筛选。由于事故触发 具有不确定性,因此事故情形的设定并不能包含全部可能的环境风险,但通过具有代 的事故情形分析可为风险管理提供科学依据。事故情形的设定应在环境风险识别的基础 筛选,设定的事故情形应具有危险物质、环境危害、影响途径等方面的代表性。

### 4.15.1.2.风险事故情形设定内容

在风险识别的基础上,分析出造成本项目风险及伴生事故的事故类型主要有火灾、爆炸和毒物泄漏,选择对环境影响较大并或自代表性的事故类型,设定风险事故情形。风险事故情形设定内容应包括环境风险类型,风险源、危险单元、危险物质和影响途径等。

本评价认为:从对大人,境影响分析,火灾爆炸、中毒事故是本工程重点防范类型。基于以上事故类型,对大人,境危害预测主要考虑泄漏产生的有毒气体,火灾及泄漏产生的伴生有毒气体对厂外环境敏感点和人群的影响。对于水环境影响,主要考虑物料泄漏和火灾爆炸时含有对水环境人物质的消防水外排对受纳水体的影响。不考虑人为破坏和自然灾害如地震、洪水、台风等所引起的风险。

## 4.16.13.风险事故情形设定

- 1、大气环境风险事故情形设定
- (1)物质泄漏危害分析

根据本项目环境风险识别,本项目可能由于化学品包装容器损坏、输送管道破裂或人为操作失误而引起物料泄漏。

- ①具有强腐蚀性的化学品(如硫酸、氨水等)泄漏挥发进入大气,对局部大气环境造成超标污染;预受热分解或与酸类接触放出有毒有害气体会对周围人体等造成中毒影响;
- ②易燃易爆化学品(如甲苯、甲醇、丙酮、乙腈、乙酸乙酯等)泄漏,其蒸气与空气形成爆炸性混合物,遇明火,高热极易燃烧爆炸。与氧化剂接触发生强烈反应,甚至引起燃烧。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源引着回燃。若遇高热,容器内压增大有开裂和爆炸的危险。火灾爆炸会对厂内的构筑物、设备等造成破坏,同时对附近的人员成烧伤或伤亡,在燃烧时释放的大量烟尘对周围局部大气环境造成污染。

③挥发的有毒有害气体和火灾爆炸事故过程中化学品燃烧产生的有毒有害人体进入大气中,会对局部大气环境造成污染。泄漏液体、消防废水等事故废水如控制不好有可能流入附近的绿化带,对地表水体造成污染,对土壤造成破坏。

比较各类事故对环境影响的可能性和严重性,5类污染事故的形为次数见表4.15-1。火灾事故排出的烟雾和炭粒会直接影响周围居住区及植物,其可能分排列在第1位,但因属于暂时性危害,严重性被列于最后。有毒液体泄漏事故较为常见。水体和土壤的污染会引起许多环境问题,因此可能性和严重性均居第2位。爆炸震动波可光会使10km以内的建筑物受损,其严重性居第1位。据记载特大爆炸事故中3t重的设备碎片会飞出1000m以外,故爆炸飞出物对环境的威胁也是有的。据国内35年以来的经过,有毒气体外逸比较容易控制,故对环境产生影响的可能性最小,但若泄漏量大,则逐成严重性是比较大的。

表 4.15-1 次 事故可能性、严重性排序表

序号	污染事故类型	可能性	严重性
1	<b>全</b> 火燃烧后烟雾影响环境	1	5
2	<b>、</b>	4	4
3	有毒气体外逸污染环境	5	3
4	<b>从</b> 爆或泄漏后有毒液体流入周围环境造成污染	2	2
5	爆炸震动波及界外环境造成损失	3	1

为进一大桥潜在的危险事故及其源项,采用"环境风险评价实用技术与方法"推荐的事件树方法,发潜在的危害事故进行分析。针对前述危险单元,绘制了相应的事件树,如图 4.15-1。

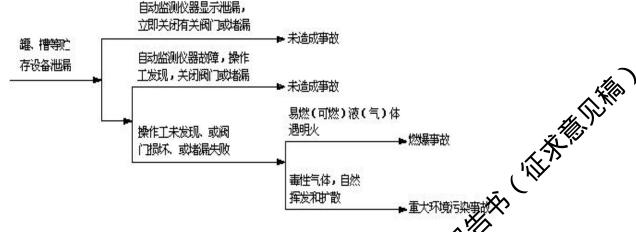



图 4.15-1 化学品泄漏事件树示意图

# (2)次生、伴生危害分析

中试过程所用部分化学品在泄漏后遇水。或其他化学品会产生伴生和次生的危害,详见表 4.15-2。

	表 4.15-2	要伴生、次生危害一览表	
名称	K T	次生/伴生危害产物	
	*		

化学品名称	条件	次生/伴生危害产物	次生危害途径
-4:	ላ`		通过大气扩散影响周围
(A)	`		大气环境,造成区域内局
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			部大气环境质量超标,进
121	遇明火		而影响到周围居民等环
A**	或易燃		境保护目标,可能对近距
	物		离范围内的操作工人或
Alb.			其他人员造成伤害;消洗
			废水漫流进入绿地,可能
			经渗透、吸收污染地下水

水水、堵漏过程中可能使用的大量拦截、堵漏材料,掺杂一定的物料,若事故排放后随意 水块、排放,将对环境产生二次污染。

结合项目内各化学品的理化性质和化学品最大储存量,确定最大可信事故为: N,N-二甲基甲酰胺泄漏事故、甲苯泄漏事故、乙腈泄漏及燃烧爆炸造成的次生/伴生事故。

#### 2、地表水风险事故情形设定

(1)物料泄漏、火灾、爆炸等事故状态下,由于管理、失误操作等原因,可能会导致冲洗污染水、消防污水、泄漏物料等通过雨水系统从雨水排口进入外部水体,污染地表水体。由于本项目雨水总排口设置截止阀,发生事故时,可将事故废水截留在厂区内。同时园区制定了突发水污染事件应急防范体系建设实施方案,建立了企业厂界、集中区边界、周边水体的"三级防控"体系,进一步降低对周边水体的污染概率。

(2)当污水站出现异常,生产废水超标排放,对污水处理厂产生一定的冲击,从而对纳水水体产生影响。企业废水总排口设置截止阀,当污水站出现异常,迅速切断厂区废水总排口的阀门,将废水排入应急事故池和截留在污水处理站中,不排出厂区外,对外环境河流的水质不产生影响。

### 3、地下水风险事故情形设定

厂区各车间、污水处理设施防渗层由于老化、腐蚀等原因出现成长后,会导致泄漏物料和污水处理站中的废水泄漏进入地下水系统中,对地下水产生,成的污染。

## 4.15.2. 源项分析

按照《建设项目环境风险评价技术导则》(HJ169 18),一般而言,发生频率小于 10% 年的事件是极小概率事件,可作为代表性事故情况中最大可信事故设定的参考。本次选取 N,N-二甲基甲酰胺泄漏事故、甲苯泄漏事故、乙烷泄漏及燃烧爆炸造成的次生/伴生事故作为最大可信事故。根据 HJ169-2018 中表 E.1 泄漏频率表,选取常压单包容储罐泄漏、气体储罐概率 5×10% 时的泄漏模式,即 10min 内水流完进行预测,源项分析如下:

本项目大气环境风险评价等级为一级,因此分别选取最不利气象条件及当地最常见气象条件进行后果分析。最不利益条件取 F 类稳定度、1.5m/s 风速、温度 25°C、相对湿度 50%;最常见气象条件取 D **** 起定度、2.0m/s 风速、温度 16.6°C、相对湿度 73.11%。

泄漏液体的蒸发分为闪蒸蒸发、热量蒸发和质量蒸发三种,其蒸发总量为这三种蒸发之和。

液体中闪蒸部分:

$$F_{v} = \frac{C_{p} \left( T_{T} - T_{b} \right)}{H_{v}}$$

过热液体闪蒸蒸发速率可按下式估算:

$$Q_1 = Q_L \times F_v$$

式中: Fv—泄漏液体的闪蒸比例;

T_T—储存温度, K;

T_b—泄漏液体的沸点, K;

Hv—泄漏液体的蒸发热, J/kg;

Cp—泄漏液体的定压比热容, J/(kg·K);

Q₁—过热液体闪蒸蒸发速率, kg/s;

QL—物质泄漏速率, kg/s。

# ②热量蒸发估算

$$Q_2 = \frac{\lambda S \left( T_0 - T_b \right)}{H \sqrt{\pi \alpha t}}$$

式中: Q2—热量蒸发速度, kg/s;

T₀—环境温度, K;

T_b—泄漏液体的沸点, K;

H—液体气化热, J/kg;

t—蒸发时间,S;

λ—表面热导系数, W/(m

S--- 液池面积, m²;

 $\alpha$ —表面热扩散系**数** 1  2 /s。

# ③质量蒸发估算

当热量蒸发结束**%**转由液池表面气流运动使液体蒸发,称之为质量蒸发,其蒸发速率按下式计算:

$$Q_3 = a \times p \times M / (R \times T_0) \times u^{(2-n)/(2+n)} \times r^{(4+n)/(2+n)}$$

Q3—质量蒸发速度, kg/s;

α,n—大气稳定度系数,按表 F.3 选取;

p—液体表面蒸气压, Pa;

M—物质的摩尔质量, kg/mol;

R—气体常数, J/(mol·k);

T₀—环境温度, k; u—风速, m/s; r—液池半径, m。

# ④液体蒸发总量计算

液体蒸发总量按下式计算:

$$W_p = Q_1 t_1 + Q_2 t_2 + Q_3 t_3$$

式中: Wp--液体蒸发总量, kg;

- Q₁—过热液体闪蒸蒸发速率, kg/s;
- Q2—热量蒸发速度, kg/s;
- Q3—质量蒸发速度, kg/s;

t₁—闪蒸蒸发时间, S; t₂—热量蒸发时间, S; t₃—从液体泄漏到全**成**理完毕的时

间,S。

# 4.15.2.1.N,N-二甲基甲酰胺泄漏事故

考虑事故发生频率及影响,选取 1 个 N,N-二甲基甲酰胺储存体 10min 内泄漏完进行预测,即事故情况下,库区的 N,N-二甲基甲酰胺储存桶破裂一桶,泄气 为 20kg,泄漏速率为 0.03kg/s。液体常压下沸点大于环境气温,不会产生热量蒸发,考虑,面气流的运动导致的质量蒸发,按 30min 后事故得到控制,各参数选取及计算结果详见下表。

表 4.15-3 N,N-二甲基甲基胺泄漏事故源项分析表

	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
泄漏设备类型	N,N-二甲基甲酰胺储存桶
泄漏危险物质	
操作温度/°C	
操作压力/Mpa	
最大存在量/kg 4	
泄漏孔径/mm、たい	
泄漏时间/nsi	
泄漏频和ha	
泄 <b>人</b> /kg	
<b>入</b> 稳定度	
泄流文体蒸发速率/(kg/s)	
他漏液体蒸发量/kg	

#### 4.15.22. 甲苯泄漏事故

考虑事故发生频率及影响,选取 1 个甲苯储存桶 10min 内泄漏完进行预测,即事故情况下,中试楼的甲醇吨桶破裂一桶,泄漏量为 1000kg,泄漏速率为 1.67kg/s。液体常压下沸点大于环境气温,不会产生热量蒸发,考虑表面气流的运动导致的质量蒸发,按 30min 后事故得到控制,各参数选取及计算结果详见下表。

表 4.15-4	甲苯泄漏事故源项分析表
1C T.1J-T	1 4~1 匹 1/10 子 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	1 1—114 4 124441 2124 121 4
泄漏设备类型	甲苯吨桶
泄漏危险物质	
操作温度/°C	
操作压力/Mpa	
最大存在量/kg	
泄漏孔径/mm	105
泄漏时间/min	
泄漏频率/m·a	
世漏量/kg	متد
大气稳定度	*X,
泄漏液体蒸发速率/(kg/s)	
泄漏液体蒸发量/kg	· diality

# 4.15.2.3. 乙腈泄漏及燃烧爆炸造成的次生/伴生事故

# 1、乙腈储存桶泄漏事故

库区的乙腈储存桶破裂一桶,泄漏量为25g,泄漏速率为0.04kg/s。液体常压下沸点大于环境 气温,不会产生热量蒸发,考虑表面气流的运动。致的质量蒸发,按30min后事故得到控制, 各参数选取及计算结果详见下表。

表 4.9-5 人名精泄漏事故源项分析表

泄漏设备类型	乙腈储存桶
泄漏危险物质 ✓	
操作温度/℃	
操作压力/Mpa	
最大存在量次。	
泄漏孔 <b>术</b> nm	
泄漏的间/min	
泄漏量/kg	
泄漏液体蒸发速率/(kg/s)	
泄漏液体蒸发量/kg	

# 2、乙腈储存桶燃烧爆炸造成的次生/伴生事故

乙腈储存桶遇明火发生了火灾爆炸,并次生/伴生一氧化碳、氰化氢等有毒有害物质,综合考虑其理化特性,本次将氰化氢作为燃烧爆炸 这的次生/伴生事故的预测因子。 本项目单个乙腈储存桶最大储存量为 25kg,发生火灾的包装桶以 4 个计(泄漏桶及周边桶)。次次按最不利情况 100kg 的乙腈发生燃烧 造成的次生/伴生事故的预测因子。

后全部转化为氰化氢,则氰化氢的产生量约为 66kg。乙腈发生燃烧事故按 15min 计,则氰化素产生速率为 0.073kg/s。4.15.2.4.源强汇总

由上述分析可知, 拟建项目风险事故情形源强一览表详见下表。

# 表 4.15-6 拟建项目风险事故情

		危险	危险	影响	释放或泄漏	释放或泄漏时	最大释放	泄漏液体	蒸发速率	泄漏液体	滋发量
序号	风险事故情形描述	厄险 単元	厄極   物质	 	速率	间	或泄漏量	F	D	F	D
		十九	1/2//		Kg/s	min	kg	kg/s	kg/s	kg	kg
1	N,N-二甲基甲酰胺储存 桶泄漏	甲类仓库	N,N-二甲基甲酰胺	扩散	Kg/s						
2	甲苯吨桶泄漏	5#中试楼	甲苯	/ 护散							
3	乙腈储存桶泄漏	甲类仓库	乙腈	<b>大</b> 作散							
4	乙腈储存桶燃烧造成的 次生/伴生事故	甲类仓库	氰化氢	扩散							

#### 5. 环境现状调查与评价

#### 5.1. 自然环境概况

#### 5.1.1. 地理位置

江苏省泰兴经济开发区作为泰兴市的沿江工业组团,位于泰兴市区西侧 7 公里,依江而建,以港口为依托,以化工为主导。根据规划将设置"四横三纵"七条主干道,与文区道路网衔接,加强开发区与主城区的联系。

本项目位于江苏省泰兴市经济开发区内,项目地理位置详见图 1.

#### 5.1.2. 地形地貌

本地区为长江冲积平原的河漫滩地,属第四纪全新经验层,具有典型三角洲河相冲淤地 貌特点,江滩浅平,江流曲缓。地势开阔平坦,略号光之向西南倾斜,一般高程 3.5 米左右。沿江筑有填土大堤,堤顶高程一般 7.3 米,堤外之 丛生,堤内为农田。土壤系长江冲积母岩逐渐发育而成,表层为亚粘土,厚约 1-2 米 之二层为淤积亚粘土,厚约 2-3 米,第三层为粉砂土,厚约 15 米。本地区地震烈度为 6 人。区内无采空区、崩塌、滑坡、泥石流、冻土等特殊地形、地貌。

根据《中国精细化工(泰文 开发园区发展规划(2015~2030)环境影响报告书》,化工园区内近期建设项目地质的资料:该区地表以下 54 米内的土层按其成因类型、物理力学指标的异同分为 I、II、 大工工程地质层,细分为 11 个工程地质(亚)层: I 层为人工填土(河堤,勘察孔未揭露,; II 层为冲淤积成因,软弱粘性土为主,局部分布砂性土; III 层为冲积成因,分布产定的砂性土,厚度较大。该区地质层参数见表 5.1-1。

	W 3.1 1	TATE WORK A D XX	
土层代号	土层名称	桩侧极限阻力 f(KPa)	桩端极限阻力 R(KPa)
II1	浮淤	/	/
II2	粘土	35	/
II3	淤泥质亚粘土	20	/
II4	粉砂	40	1700
II5	粉细砂	50	3200
II6	淤泥质亚粘土	25	1 3,405
II7	亚粘土	41	/ 4.75
II8	粉砂	58	
II9	亚粘土 (夹砂)	24	ممر
III	细砂	68	52,083

表 5.1-1 项目区域地质层参数

根据《中国地震动参数区划图》(GB18306-2015),本区域的地震基本规度为 7 度,地震动峰值加速度为 0.10g,地震动反应谱特征周期为 0.35s。

### 5.1.3. 水系水文

#### 1、地表水

泰兴西濒长江,现境内河流统属长江水系。本地区水水流丰富,河流纵横交错,水网密布。 泰兴市境内共有有名常流河道 350 多条,总长约 700 公里,以人工河道为主。规划区涉及的主 要内河多呈东西走向,主要有团结港、通江河、水东运河、丰产河、新段港、洋思港、芦坝港、 包家港、天星港等,区域水系概况见图 5.1-2

#### (1)长江水文特征

长江泰州段西起泰州新扬湾港、车车请江的长江农场,全长 97.36 公里,沿江经过泰州港、过船港、泰兴经济开发区码头、工圩港、夹港、八圩港、九圩港、新港等较大码头,江面最宽处达 7 公里,最窄处只有 2 公里。江潮每月涨落各两次,农历十一、二十五为换潮日,潮水位全月最高。本长江、 2 NNW-SSE 走向,岸段顺直微凸。距入海口约 200Km,距上游感潮界点大通水文站为 360Km,河川径流受潮汐影响,每日有 2 个高潮 2 个低潮,平均涨潮历时 3 小时 50 分, 3 初历时 8 小时 35 分。据大通水文站资料,长江多年平均流量 29600m3/s,10 年一遇最优益量 7419m3/s,历年最大流量 92600m3/s,历年最小流量 4620m3/s。多年平均年内分配传入为: 7-9 月为流量最大的月份,三个月的径流占全年的 40%,12-2 月是流量最小的月份,一个月的径流量占全年的 10%。一般认为长江下游的洪水期潮流界为江阴,非洪水季节潮流界上移。

#### (2)内河主要情况

园区所在区域属长江水系,泰兴境内各通江支流均由节制闸调节水位,水流流向和流速受节制闸控制。区域内主要河道情况见表 5.1-2。

	- · ·
底宽 (米)	河底高程 (米)
10~30	-1.0
16	1.5
5~10	1
4~5	0~0.5
3~5	0~0.5
3~5	0~0.5
3~5	0~0.5
8~15	-1.5~ -0.5
	10~30 16 5~10 4~5 3~5 3~5 3~5

表 5.1-2 主要河道情况一览表

团结港河:长 2.4 公里,底宽 16 米,河底高程 1.5 米,现主要功能为排涝水水纳邻近企业雨水和清下水。

新段港河: 长 8.2 公里, 底宽 4-5 米, 河底高程 0-0.5 米。

如泰运河:如泰运河在泰兴境内全长 45km,入河河口宽 50 km,是贯穿泰兴全市东西的引、排、航河道。河水水位、流向、流速受节制闸控制,过级海套闸(过船闸)位于如泰运河河口的泰兴市过船镇(现为滨江镇),包括节制闸和船(水)1 座,具有通航、引水、排涝等功能。过船港节制闸于 1959 年兴建,1999 年按百年之遇洪水标准进行了除险加固。节制闸是如泰运河通江控制口门,为 5 孔中型节制闸,闸流流宽 4.0m,节制闸总净宽 21.0m,规划排涝面积 258.7km²,引江灌溉面积 32 万亩。设计私资流量 94m³/s,灌溉引水流量 48m³/s。船闸始建于 1991 年,分级标准为五级,建筑物设计标准为III级。闸首净宽 16m,长 130m,上闸首门槛顶高程-1.5m,下闸首门槛顶高程-5.5m,上下游引航道底宽 30m。

天星港,历史上称黄家港、从西江边东流,经大生镇,接通泰兴市环城河,流经大生、张桥、姚王、河失、南沙、龙桥等乡镇,全长33.73公里,河口宽45-50米,底宽8-15米,底高-1.5~-0.5米,为全线,侧农田灌溉、改良土壤、水上运输创造了良好的条件。

### 2、地下水1

区域技术第四系及上第三系厚度巨大的粘土、亚粘土、砂、砾石等松散堆积物的堆积形成长江云水州漫滩平原,发育了孔隙潜水含水组和孔隙承压水含水组。又因地势平坦,坡降小,地大岩性松散,更利于大气降水入渗补给。同时由于地表水系发育,也有利于地表水渗漏补给地下水。加上长江、淮河洪水多次泛滥及第四纪时期海水的时进时退,致使孔隙水水量丰富,水质较复杂。其中潜水层底板埋深除泰兴镇至靖江地段为20~25m 外,其余在25~30m 之间,潜水埋深1~3m,流向总的趋势由西南向东北,水力坡度很小,流速极迟缓。含水层岩性以灰、灰黄色粉(亚)沙土为主,水质为淡水,矿化度0.5~0.85g/l,单井涌水量50~500m³/d。承压

水顶板埋深 40~60m, 底板埋深 150~230m, 含水层厚度 100~150m, 水质微咸, 矿化度 1~ 3g/l,单井出水量为2000~5000m³/d,是市境内开采利用地下水的主要部分。

### 5.1.4. 气候气象

本地区属北亚热带季风气候区, 四季分明、雨量充沛、气候温和、无霜期长。根据泰兴市 TANK TO THE REAL PROPERTY OF THE PARTY OF TH 气象站资料,常年平均气温 16.6℃,年均降水量 1099.1 毫米,平均相对湿度 80%。全年盛 偏东风,风速约在 2.2-3.9 米/秒,年均风速 2.1 米/秒。

### 5.1.5. 生态环境

### 1、土壤

泰兴市境内主要土壤类型为发育长江冲积母岩的小粉浆土和夜潮土 淤泥土。

### 2、植被

境内植被属常绿阔叶与落叶阔叶混交林带。人工植被主要 《田作物、经济林、防护林等; 次生植被常见于农田隙地和抛荒地,以白茅、海浮草、西水河亚蓼等为主,其次是画眉草、狗 尾草、苜蓿、蒲公英等。此外还有分布在水域环境中的**生植被;包括芦苇、菖蒲等挺水植物, 黑藻、狐尾藻等沉水水生植被和凤尾莲、浮萍等 東淳植物。

### 3、动植物

现有植物资源中,林木资源主要是父生植造的农田林网和四旁种植的树木。主要有杨树、 槐树、榆树、柳树、泡桐、水杉、林木以及苹果、桃、桑等一些果树品种;农作物主要有水稻、 小麦、棉花、豆类、薯类以及油料和蔬菜等品种; 野生植物品种较少, 主要有白茅、海浮草、 黑三棱等。

养殖的动物品种主要有鲫鱼、鲤鱼等鱼类:虾、蟹等甲壳类动物: 现有动物资源中 家禽; 野生动物品种有狗獾、刺猬、蛇、黄鼠狼等动物; 麻雀、白头翁等 鱼等甲壳类动物; 蚯蚓、水蛭等环节类昆虫; 蚂蚁、蝗虫、蜜蜂等节肢类动

## 境质量现状监测与评价

### 大气环境质量现状监测与评价

### 5.2.1.1. 评价基准年的选择

依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)5.5 节:依据评价所需环境空 气质量现状、气象资料等数据的可获得性、数据质量、代表性等因素,选择近3年中数据相对

完整的 1 个日历年作为评价基准年。本次结合已收集的相关数据,选择 2023 年作为本次的评价基准年。

### 5.2.1.2. 达标区判定

根据《环境影响评价技术导则大气环境》(HJ 2.2-2018)6.2.1.1 节:项目所在区域达标情况判定,优先采用国家或地方生态环境主管部门公开发布的评价基准年环境质量公告或环境质量报告中的数据或结论。

本项目评价基准年为 2023 年,根据《2023 年泰兴市环境状况公报》:泰兴市环境至气质量保持稳定,环境空气质量优良率 79.7%(扣除沙尘异常超标天后)。细颗粒物(M_{2.5})年平均浓度为 33 微克/立方米,故本项目所在区域为不达标区。

为实现大气环境质量限期达标,泰兴市制定了《泰兴市"十四五"生态,境保护规划》,主要规划内容如下:

深入研究泰兴市 PM_{2.5}和 O₃污染区域传输规律和季节性**大**,持续推进 PM_{2.5}和 O₃源解析工作,开展协同治理工作。推动全市 PM_{2.5}浓度持续了,有效遏制 O₃浓度增长趋势,基本消除重污染天气。制定年度春夏季、秋冬季阶段性产,质量改善目标,编制臭氧污染专项治理方案和秋冬大气污染综合治理攻坚行动方案。

加强氮氧化物和挥发性有机物等前体物状,同减排防控。对涉及臭氧前体物排放的行业企业,积极采取错峰生产,推动减污降碳格类措施落实,减少 VOCs 和氮氧化物排放量。建立动态化、精细化污染源排放清单,制造产杂物减排目标在臭氧浓度快速上升的时段,鼓励建筑装饰行业停止装修工程、外立面产造工程道路划线作业、道路沥青铺设作业;鼓励汽修行业停止调漆、喷涂、烤漆等作业;其场非道路移动机械停止使用;鼓励加油站避免白天开展卸油作业,有效降低臭氧浓度。

通过采取上述了施后,项目所在区域环境空气质量状况可以得到有效的改善。

目前泰大也相继发布了《泰兴市乡镇(街道)空气质量排名及考核办法(试行)》等整治方案,发现过多措并举扎实开展大气污染防治工作,区域环境空气质量将得到改善。

### 5.241.3 基本污染物环境质量现状评价

标:依据《环境影响评价技术导则 大气环境》(HJ 2.2-2018)6.2.1.3 章节:"评价范围内没有环境质量监测网数据或公开发布的环境空气质量现状数据的,可选择符合 HJ664 规定,并且与评价范围地理位置邻近,地形、气候条件相近的环境空气质量城市点或区域点监测数据"。

根据建设项目所在地 2023 年连续 1 年的监测数据,对项目区基本污染物环境质量现状进行统计:

表 5.2.1-1 区域空气质量年评价指标现状评价表

	<u> </u>	·- ·- ·		, ,, , .	
污染物	年评价指标	现状浓度 (μg/m³)	标准值 (µg/m³)	占标率 (%)	达标情况
	年平均质量浓度				达标
$\mathrm{SO}_2$	第98百分位数日平均质量浓度				日均值达标率 100%
NO	年平均质量浓度				达标
NO ₂	第98百分位数日平均质量浓度				日均值达标率 100%
DM	年平均质量浓度				达标 火炉
$PM_{10}$	第95百分位数日平均质量浓度				日均值达标率 103%
DM	年平均质量浓度				达标 <b>义</b>
$PM_{2.5}$	第95百分位数日平均质量浓度				日均值达标率 93.3%
СО	24 小时平均第 95 百分位数				<b>送标</b>
O ₃	日最大 8 小时滑动平均第 90 百 分位数			ړ.	□ <b>8</b>

### 5.2.1.4. 其他污染物环境质量现状评价

### 5.2.1.5. 现状评价结果

根据《2023年泰兴市生态环境状况公报》,2023年度第自区为环境空气质量不达标区;根据特征因子补充监测,各类指标满足《大气污染物经》排放标准详解》《环境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D、日本环境厅中央环境审议会制定的环境标准等标准限值,区域环境空气质量良好。

# 5.2.2. 地表水环境质量现状监测与评价。

根据 2.3.1.2 章节,本项目地表本境评价工作等级定为三级 B,故本次地表水监测断面布设情况详见图 5.2-2 及下表:

1、监测断面及监测因

表 5.2.2-1 地表水监测布点情况

编号	河流	监测断面	监测项目
W1	. 1	开发区水厂取水口区域	水温、pH、溶解氧、高锰酸盐指数、
W2	长汉《	<b>V</b> 开发区工业污水处理厂入江口下游 500 米	COD、氨氮、总磷、氟化物、氯化物、
W3		开发区工业污水处理厂入江口下游 2000 米	挥发酚、石油类、阴离子表面活性剂、
W4.	夢思港	开发区工业污水处理厂排污口上游 500m	│ 硫化物、硫酸盐氰化物、铁、苯乙烯、 │ 甲苯、二甲苯、钴、镍及有关水文要素

**上**监测频次

每天监测两次,上下午各一次,监测3天。

3、监测结果及评价

表 5.2.2-2 地表水实测水质指标统计表 单位: mg/L

采样地点	监测结果				
W1	范围				

均值 大污染指数 范标率% 范围 均污染率% 范围 均后 大超标率% 监测结果 范围 均污染率% 监型,方流率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
超标率% 范围 均值 大污染指数 超标率% 范围	A THE REAL PROPERTY OF THE PARTY OF THE PART				
范围 均值 大污染指数 超标率% 范围	A THE REAL PROPERTY OF THE PARTY OF THE PART				
均值 大污染指数 超标率% 范围	A THE REAL PROPERTY OF THE PARTY OF THE PART				
大污染指数 超标率% 范围	A THE REAL PROPERTY OF THE PARTY OF THE PART				
超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
范围	A THE REAL PROPERTY OF THE PARTY OF THE PART				
<ul> <li>担国</li> <li>均值</li> <li>大污染指数</li> <li>超标率%</li> <li>监测结果</li> <li>范围</li> <li>均值</li> <li>大污染指数</li> <li>超标率%</li> </ul>	A THE REAL PROPERTY OF THE PARTY OF THE PART				
以但 大污染指数 超标率% 监测结果 范围 均值 大污染指数 超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
超标率% 监测结果 范围 均值 大污染指数 超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
监测结果 范围 均值 大污染指数 超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
监测结果 范围 均值 大污染指数 超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART				
<ul><li>売期</li><li>均值</li><li>大汚染指数</li><li>超标率%</li><li>出。</li></ul>	A THE REAL PROPERTY OF THE PARTY OF THE PART				
均值 大污染指数 超标率%	ATHER KIT	WENT DE			
大污染指数 超标率% 出。	a tillight N. Tr.				
超标率%	A THE REAL PROPERTY OF THE PARTY OF THE PART	III ELIA			
± 0	ATTEMPT NOTE OF THE PARTY OF TH	WEITH			
H •	ATTENNE NO.	WEETING.			
ц.°	ATTENNE MET	WEIGHT			
47					
A PLANT					
<b>炒</b> .					
7					
	A STATE OF THE PARTY OF THE PAR	A STATE OF THE PARTY OF THE PAR	ANT THE PARTY OF T	是是是其中	均值 上大污染指数 超标率%  监测结果 范围 均值 上大污染指数 超标率%  出。

### 表 5.2.2-3 地表水引用水质指标统计表 单位: mg/L, pH 无量纲, 水温℃

				74	 6/4 6 4 1 / 14/4 6/2/4	H MANAGETT PC	1 124 222	, F / 0	117 /11				
断面	监测结果												
	范围												
W1-长江	均值												
W 1- K-1.	最大水质指数										<u> </u>		
	超标率%										(A)		
	范围										, ,		
W2-长江	均值									.405			
W 2- K-1⊥.	最大水质指数												
	超标率%									18			
	范围								_ (				
W3-长江	均值								. ※				
₩3-₩4L	最大水质指数								*//>				
	超标率%								XXX				
	II类							. 0	10,2				
	范围												
W4-洋思港	均值							/XXX					
W4-什心伦	最大水质指数							·火/、					
	超标率%							<i>⟨</i> ⟩′					
	IV类												
	·	<u> </u>	•				7, 7,					•	

注:①"ND"表示未检出;②依据 2020 年 8 月生态环境部部长信箱关于"地表水质量标准中总氮限值问题的回复",在评价水质时,《本有将总氮作为评价指标。

(GB3838-2002)中央关于质标准,水质较好;洋思港断面(W4)氯化物、硫酸盐、硝酸盐出现超标,其他监测因子可 由监测结果可知:长江断面(W1~W3)各监测因子可达到《地表水环境质量标准》 达到 GB3838-2002 中IV类水质标准,初步分析洋思港部分指标超标主要是受上游来水影响。

本次引用《泰兴市兴安精细化工有限公司 10Kt/a 五氯化磷技改项目环境影响报告书》中友联场、滨江中沟监测数据,监测时间为 2023 年 8 月 23 日~8 月 25 日,监测单位为泰科检测科技江苏有限公司,则报告编号为 TK23M012871,监测数据如下: 监测报告编号为 TK23M012871, 监测数据如下:

表 5.2.2-4 友联中沟、溪江中沟水质监测结果统计表 单位: mg/L, pH 无量纲

		<b>v</b> :	****** <b>A</b>	* * * * * * * * * * * * * * * * * * * *	. ,			
监测断面	项目	pH 值	SS 1211	COD	氨氮	总氮	TP	氯离子
去联由海(工业运业协理	最小值		ZYW,X					
友联中沟(工业污水处理 - 厂排污口下游 500m 处) -	最大值		M/L I					
) 排行口下册 300m 处 /	超标率		A1-75					
滨江中沟(滨江中沟与洋 — 思港交汇处上游) —	最小值							
	最大值		& V					
	超标率	X						
IV类标		-15-						

表 5.2.2-5 友联中沟、滨江中沟水质指标单项指数值一览表

断面	pH 值	COD	氨氮	总氮	TP	氯离子
友联中沟						
 滨江中沟						

注:②依据 2020 年 8 月生态环境部部长信箱关于"地表水质量标准中总氮限值问题的回复",在评价水 质时,不再将总氮作为评价指标。

监测结果表明,友联中沟、滨江中沟能够满足《地表水环境质量标准》 IV类水标准,水质环境良好。

### 5.2.3. 地下水环境质量现状监测与评价

### 5.2.3.1. 地下水水质调查

1、监测因子

(1)K++Na+、Ca2+、Mg2+、CO32-、HCO3-、Cl-、SO42-的浓度;

(2)基本因子: pH、氨氮、硝酸盐、亚硝酸盐、挥发性酚类 总硬度、铅、氟、镉、铁、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、总大肠菌群、菌落总数;

(3)特征因子: 阴离子表面活性剂、钴、镍、

(4)地下水水位、水温。

2、监测频次:采样一天,每天

3、监测点位:本次设置10个

地下水监测布点情况

	7.2.0 1 AT   7.111(X) 11 / X	119 70	
点位	<b>没</b> 人名称	方位/距离	监测项目
D1	<b></b> 所在地	/	(1)(2)(3)
D2	江苏正域在科技发展有限公司区域	E/约 150m	(3)
D3	<b>从</b> 原杨家墩子村区域	W/约 200m	(3)
D4	<b>人</b> 汇得新材料有限公司拟建地	E/约 700m	(1)(2)(4)
D5	中燃化学公司东北侧空地	SE/约 1000m	(1)(2)(4)
D6	联	NW/约 700m	(4)
D7	栗田工业水处理有限公司西南侧	SW/约 450m	(4)
D8	泰兴合全药业西侧	SSE/约 1200m	(4)
D9×	泰州兴普泰生物公司东南侧	SE/约 800m	(4)
DIO	夏荷科技有限公司东南侧	E/约 1600m	(4)

4、现状监测结果统计分析

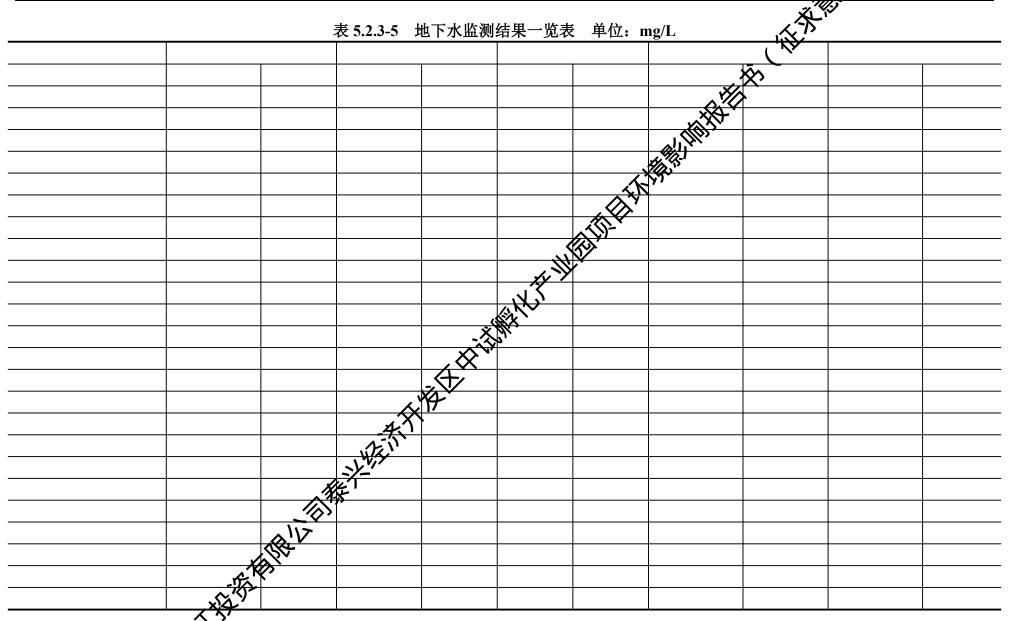
(1)地下水水质

(2)地下水水位

(3)地下水监测数据统计如下:

①地下水水位信息

地下水水位统计结果详见下表。


表 5.2.3-3	 ド水カ	(位)	监测	信息表

	** - · · · · · · · · · · · · · · · · · ·		·
采样点位	水位 (m)	采样点位	水位 (m)
			-405

# ②地下水水质信息

	表 5.2.3-4 地下水检测物质、方法及检出限	XXX	
检测因子	分析依据	出限	单位
pH 值	水质 pH 值的测定 电极法 HJ 1147-2020  水质 32 种元素的测定 电感耦合等离子体 光谱 法 HJ776-2015	<u>.</u> . /	/
钾	/ XX	0.036	mg/L
钠		0.005	mg/L
镁		0.002	mg/L
钙	法 HJ776-2015	0.004	mg/L
钴		0.001	mg/L
镍		0.006	mg/L
碳酸根	地下水质分析方法 第 49 部分: 碳酸根、重碳酸根和	5	mg/L
重碳酸根	氢氧根离子的测定滴定法 DZ/T0064.49-2021	5	mg/L
硫酸根离子	水质 无机阴离子 (F·、X) NO ₂ ·、Br·、NO ₃ ·、PO ₄ ³ ·、	0.018	mg/L
氯离子	SO ₃ ²⁻ 、SO ₂ 2 的测定 离子色谱法 HJ 84-2016	0.007	mg/L
氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	0.025	mg/L
硝酸盐氮	水质、硝酸盐氮的测定 紫外分光光度法 HJ/T346-2007	0.016	mg/L
亚硝酸盐氮	(GB/T 7493-1987)	0.003	mg/L
挥发酚	木质 挥发酚的测定 4-氨基安替比林分光光度法 HJ 503-2009	0.0003	mg/L
氰化物	地下水质分析方法 第 52 部分: 氰化物的测定 吡啶- 吡唑啉酮分光光度法 DZ/T 0064.52-2021	0.002	mg/L
总硬度	水质 钙和镁总量的测定 EDTA 滴定法 GB/T7477-1987	3.0	mg/L
溶解性总固体	地下水质分析方法 第 9 部分:溶解性固体总量的测定 重量法 DZ/T 0064.9-2021	/	/
耗氧量	地下水质分析方法 第 68 部分: 耗氧量的测定 酸性高 锰酸钾滴定法 DZ/T 0064.68-2021	/	/
氟化物	水质 氟化物的测定 离子选择电极法 GB/T7484-1987	0.05	mg/L
硫酸盐	水质 硫酸盐的测定 铬酸钡分光光度法 HJ/T342-2007	8	mg/L
氯化物	水质 氯化氢的测定 硝酸银滴定法 GB/T11896-1989	0.85	mg/L
铬 (六价)	地下水质分析方法 第 17 部分: 总铬和六价铬量的测	0.004	mg/L

	定 二苯碳酰二肼分光光度法 DZ/T0064.17-2021		
砷(总砷)	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	0.3	μg/L
汞 (总汞)	水质 汞、砷、硒、铋和锑的测定 原子荧光法 HJ 694-2014	0.04	μg/L
————— 铅	《水和废水监测分析方法》(第四版 增补版)国家环	0.21	μg/L
	境保护总局(2002年)3.4.7.4 石墨炉原子吸收法	0.01	μg/L
铁	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	0.03	mg
<del></del>	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	0.01	I Nog/L
总大肠菌群	水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定酶底物法 HJ1001-2018	/ <b>*</b> /×	? /
细菌总数	水质 细菌总数的测定 平皿计数法 HJ 1000-2018	-52	/
LAS	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T7494-1987	0.05	mg/L
硫化物	水质 硫化物的测定 亚甲基蓝分光光度法 HJ1226-2021	0.003	mg/L
甲苯	. *!\	2	μg/L
二甲苯	── 水质 苯系物的测定 顶空/气相色谱像 HJ1067-2019	2	μg/L
苯乙烯	HJ1067-2019	3	μg/L
	大元素原		
	大块 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (		
	动物性		
	水质 苯系物的测定 顶空/气相色谱器 HJ1067-2019 N统计结果详见下表。		
	是光光流行		
	操业技术		
alv	影影光光流		
THE LANGE THE PARTY OF THE PART	影影光表和技术		
R. KINGLIA	影影光光流形成		
是提供	影影光光和技术		
极级	A THE		
A TARIFICATION OF THE PARTY OF	ARTHER THE		
A THE TANK IN THE PARTY OF THE	ARE VILLE THE THE THE PARTY OF		
北村港江港港村	A STANTAL TO THE STANTAL STANT		
LANGELLA	ARE WEST THE THE THE STATE OF T		
上代表证法	WARTH A THE WARTH A STATE OF THE STATE OF TH		
之情感。[[***]********************************	A STANDARY OF THE STANDARY OF		
A THE THE PARTY OF	A STANDARY OF THE STANDARY OF		





注: "ND"表示未检出。

## 5.2.3.2. 地下水水质评价

根据统计结果可知,各水质监测点位的监测指标均能达到或证据。 《地下水质量标准》(GB/T14848-2017)IV类标准,区域地下水水质良 好。

### 5.2.4. 声环境质量现状监测与评价

### 1、声环境质量现状监测

监测项目: 等效连续 A 声级

监测频次:监测2天,每天昼间、夜间各1次,详见图4.1-1及下表。

表 5.2.4-1	声环境现状监测布点及监测项目一览表

		~//2~
编号	监测点位名称	监测因子
N1	东厂界外 1m	
N2	南厂界外 1m	连续等效声级
N3	西厂界外 1m	上级等双户级 (
N4	北厂界外 1m	<b>*</b>

### 2、现状监测结果统计分析

本次委托江苏迈斯特环境检测有限公司于 2023 年 11 月 04 日~06 展监测工作,监测报告编号为 MST20231101270-1,监测数据统计如下。

表 5.2.4-2 项目厂界噪声现状监测结果统计表》单位: dB(A)

	<b>1人 3・2・3・2</b> 7人 ロ / ク	广东广州小皿州沿不为		L: uD(A)	
点位	采样时间	ī	<b>人</b> 测值	标准值	达标情况
	2022 11 04 2022 11 05	昼间 15:27~15:37	54	65	达标
NI1	2023-11-04~2023-11-05	夜间 00:23~00:33	44	55	达标
N1	2022 11 05 2022 11 06	昼间 11:31~1171	52	65	达标
	2023-11-05~2023-11-06	夜间 00:34 60:44	44	55	达标
	2023-11-04~2023-11-05	昼间1. 15:59	55	65	达标
N2	2023-11-04~2023-11-03	夜间 69:44~00:54	43	55	达标
INZ	2023-11-05~2023-11-06	11:52~12:02	53	65	达标
	2023-11-03~2023-11-00	间 00:57~01:07	42	55	达标
	2023-11-04~2023-11-05	<b>子</b> 昼间 16:08~16:18	53	65	达标
N3	2023-11-04~2023-11-03	夜间 01:14~01:24	45	55	达标
1N3	2023-11-05~2023	昼间 12:14~12:24	52	65	达标
	2023-11-03~2023	夜间 01:15~01:25	43	55	达标
	2023-11-04/2023-11-05	昼间 16:26~16:36	55	65	达标
N4	2023-11-03	夜间 01:37~01:47	44	55	达标
114	2023 11 05 2023 11 06	昼间 12:37~12:47	52	65	达标
	2023-11-06	夜间 01:37~01:47	43	55	达标

### 土壤环境质量现状监测与评价

根据 2.3.1.5 章节,本项目土壤评价等级为二级,故本次地下水监测点位布设情况如下:

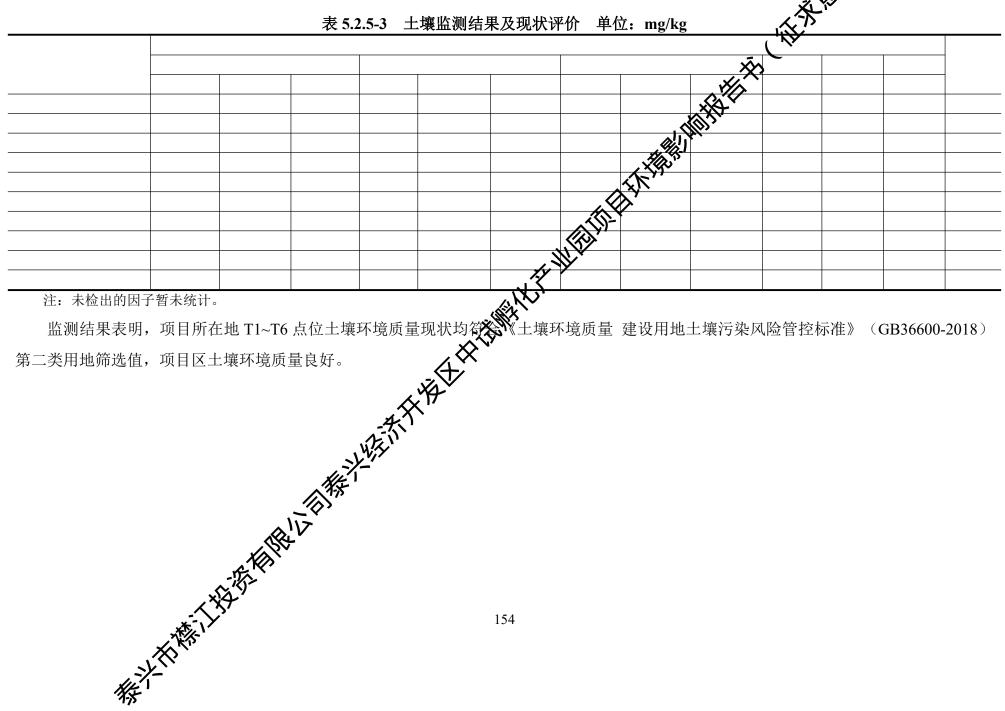
1、点位布设及监测因子

土壤布点情况详见图 5.2-1 及下表:

		表 5.2.5-	1 土壤监测	点位一览表	
			1		the state of the s
			-		监测项目
			-		(.//
			-		Ź,
					*//>
					XX
		<u> </u>	l <del>abe</del> alla and mark <del>date</del> al	A HE NEW END. HE - HALL	
1		表 5.2.5-2 土	<b>壤中二噁央</b> 列	2监测点位一览 2000	
位置	编号	类别	取样深度	位置描述	监测项目
				(1)-	
				(49)·	

# 2、监测频次

监测1天,采样1次。


### 3、监测结果

T1-T5 点位委托江苏迈斯特环境校颁有限公司进行实测,监测时间为 2023 年 11 月 4 日,监测报告编号为 MST20231101279 4

T6点位引用《江苏正博·苏·技发展有限公司新建年产8吨电子级高纯、高丰度三氯化硼特种气体及系列新材料项目、境影响报告书》中的TB4点位数据,监测时间为2022年8月19日,监测报告编号: 1220033072080801。

二噁英类委托泰科检测科技江苏有限公司于 2024 年 3 月 10 日进行实测,监测报告编号为No.240214**XX**4M030028。

本沙 壤监测结果统计加下



土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018) 第二类用地筛选值,项目区土壤环境质量良好。

### 表 5.2.5-4 项目区二噁英类监测结果及现状评价 单位: TEQmg/kg

		检测结果		
采样地点	T1 (厂区内)	T2 (上风向)	T3 (下风向)	筛选值
二噁英类				

根据上表,项目区土壤中的二噁英类监测指标满足《土壤环境质量 建设用地土壤污染风险管控标准》(GB36600-2018)第二类用地筛选值,土壤环境质量良好。

### 5.2.6. 小结

### 1、环境空气

根据《2023年泰兴市生态环境状况公报》,2023年度项目区为环境空气**成**不达标区;根据特征因子补充监测,各类指标满足《大气污染物综合排放标准详解》、境影响评价技术导则 大气环境》(HJ2.2-2018)附录 D、日本环境厅中央环境审议、发定的环境标准等标准限值,区域环境空气质量良好。

### 2、地表水

现状监测结果表明:长江断面(W1~W3)各监测量可达到《地表水环境质量标准》(GB3838-2002)中II类水质标准,水质较好,洋思速断面(W4)氯化物、硫酸盐、硝酸盐出现超标,其他监测因子可达到GB3838-2002中以类水质标准;友联中沟、滨江中沟能够满足GB3838-2002中IV类水标准,水质环境良好。

### 3、地下水

现状监测结果表明,各水质监测点位的监测指标均能达到或优于《地下水质量标准》 (GB/T14848-2017) IV类标准、区域地下水水质良好。

### 4、声环境

现状监测结果表验 厂界昼、夜间噪声值均满足《声环境质量标准》(GB3096-2008)中 3 类标准限值、区域声环境良好

### 5、 ±

监测结果表明,项目所在地土壤环境质量现状均符合《土壤环境质量 建设用地土壤污染 经营控标准》(GB36600-2018)第二类用地筛选值,项目区土壤环境质量良好。

### 3. 区域污染源调查

## 5.3.1. 大气污染源调查与评价

根据 2.3.1.1 章节,本次项目大气环境影响评价等级为一级。依据《环境影响评价技术导则 大气环境》(HJ2.2-2018)要求,本次项目为改扩建项目,应调查本项目不同排放方案有

组织及无组织排放源;调查评价范围内与评价项目排放污染物有关的其他在建项目、已批复环 境影响评价文件的拟建项目等污染源:调查本项目所有拟被替代的污染源(如有),包括被替 代污染源名称、位置、排放污染物及排放量、拟被替代时间等。园区与本项目同类污染源强已 批在建项目污染源统计情况详见 6.1.5 大气预测源强章节中的表 6.1.4-4 及表 6.1.4-5。

### 5.3.2. 地表水污染源调查与评价

### 1、调查内容

根据 2.3.1.2 章节,本次项目地表水环境影响评价等级为三级 B。依据《环境影响 ,小开展 [2] 水水质、处理后 八叶放标准是否涵盖建设项目排 术导则 地表水环境》(HJ 2.3-2018)中 6.6.2.1 章节: 水污染影响型三级 B 评价 域污染源调查,主要调查依托污水处理设施的日处理能力、处理工艺 的废水稳定达标排放情况,同时应调查依托污水处理设施执行的排放 放的有毒有害的特征水污染物。

故本次不再开展地表水污染源调查。

- 2、开发区工业污水处理厂情况
- (1)开发区工业污水处理厂规模及工艺概况

开发区工业污水处理厂位于泰兴经济开发区域过西路北侧、滨江路西侧、沙桐公司南侧、 长江路东侧建设并营运 5 万吨/日工业污水处理工程,处理工艺为"预处理单元(预处理调节池 +预处理高效沉淀池+预处理 V 型滤池+预处理活性炭滤池)+主处理单元(主处理调节池+生化 ·提升泵房+臭氧接触池+Flopac 池+尾水泵房)"。 反应池+二沉池+高效沉淀池+V 型冰

泰兴经济开发区 5 万吨/冠江州污水处理工程项目于 2019 年 7 月 10 日取得泰兴市发展和 《COMPAND NOT SENTING NOTE: 2018-321283-77-01-531474)。 项目建成后将主要处理经济开发区工业废水,并新增排污口,排污口位于现有滨江污水处理厂 最终废水经工业排口进入友联中沟,通过友联中沟进入滨江中沟,最终

区 7.2.5 章节。

「排放标准涉及的污染物种类概况

①污水处理厂接管标准

根据《泰兴经济开发区 5 万吨/日工业污水处理工程项目环境影响报告书》,污水处理厂 废水接管要求如下:

凶污水处理厂建成后, 服务范围内对于接入污水收集管网的现有及新增工业污染源执行基 于目前园区统一的纳管标准,有机特征污染物接管标准执行《石油化学工业污染物排放标准》

(GB31571-2015)表 3 中标准,同时有其他行业污染物排放限值的应满足相应行业的排放标准。

図在企业的环境影响评价文件和/批复中,已结合企业生产工艺及排污特点制定的水污染物特征因子,需符合其适用的所属行业的相关水污染物排放标准(主要有《石油化学工业污染物排放标准》(GB31571-2015)、《无机化学工业污染物排放标准》(GB31573-2015)、《合成树脂工业污染物排放标准》(GB31572-2015)、《烧碱、聚氯乙烯工业水污染物排放标准》(GB15581-2016)、《合成氯工业水污染物排放标准》(GB13458-2013)、《杂环类农药工业水污染物排放标准》(GB21523-2008)、《铜、镍、钴工业污染物排放标准》(GD25467-2010)、《纺织染整工业水污染物排放标准》(GB4287-2012)、《电镀污染物排放标准》(B21900-2008)、《中药类制药工业水污染排放标准》(GB21906-2008)、《化学合成类制药工业水污染物排放标准》(GB21907-2008)等);如无适用的行业标准,则需满足《石油化学工业污染物排放标准》(GB31571-2015)表3中标准。

☑在企业的环境影响评价文件和/或批复及排污许证中未曾提及的特征污染因子,该指标需符合《城镇污水处理厂污染物排放标准》(★ 18918-2002)表 2 和表 3 排放限值要求;

②对于涉及第一类废水污染物,在生产**次**或设施废水排放口须满足相应的行业或其它适用的排放标准回用或直接作为危险废物**收**集处置,严禁外排。

②污水处理厂尾水排放标准

根据《泰兴经济开发区 547年/日工业污水处理工程项目环境影响报告书》,污水处理厂 尾水外排要求如下:

污水处理厂出水水产业污水排污口进入友联中沟,通过友联中沟进入滨江中沟,最终通过洋思港排入长江、推污口实施规范建设,安装 pH、COD、氨氮、流量等在线监测仪器,污水处理厂尾水水产主要指标(COD、氨氮、总磷)执行《地表水环境质量标准》(GB3838-2002)中IV类核准(浓度分别为 30mg/L、1.5(3)mg/L、0.3mg/L),其它污染因子执行《城镇污水处理厂水块物排放标准》(GB1818-2002)中一级 A 标准,特征污染物中的苯胺类、硝基苯排放水度下一、污水综合排放标准》(GB8978-1996)中一级标准(苯胺类、硝基苯类排放浓度依据为 2018 年 11 月批复的《泰兴市滨江污水处理有限公司入河排污口设置论证报告》中苯胺类和硝基苯类入江浓度)。

综上所述,结合中试基地入驻项目类型,可以判定工业污水处理厂接管及排放标准均已涵 盖本项目排放的有毒有害的特征水污染物。

### 6. 环境影响预测与评价

### 6.1. 大气环境影响预测与评价

### 6.1.1. 模型选取及选取依据

根据评价等级计算,本次大气评价等级为一级。因此,需采用进一步预测模型开展大气环境影响预测与评价。

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)表 3 推荐模型适用范围,本项目进一步预测的模型有 AERMOD,本次采用 AERMOD 对本项目进行进一步预测。

### 6.1.2. 模型影响预测基础数据

### 6.1.2.1. 预测基准年筛选

根据导则要求: 依据评价所需环境空气质量现状、气象资料等数据,可获得性、数据质量、代表性等因素, 选择近3年中数据相对完整的1个日历年作为评价基准年。本项目选取 2023年作为预测基准年。

### 6.1.2.2. 气象数据来源

项目采用的是泰兴气象站(58249)资料,气象站位于江苏省泰兴市,地理坐标为东经120.0517°,北纬32.1667°,海拔6米,拥有长期大久象观测资料。

### 6.1.2.3. 气象特征

本次评价调查收集了最近的泰兴与**%**站主要气候统计资料(近 20 年)和近年的常规地面气象数据(风向、风速等)。

表	6.42-1、项目所在地区气象	<b>持征统计资料</b>	
<u> </u>	kii		
THE LEWIS TO SERVICE STATE OF THE PARTY OF T			
~~~~			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
J. Commission of the Commissio			

6.1.2.4. 常规气象资料

根据泰兴气象站的近20年气象观测资料,项目所在区域常规气象资料分析如下:

	表 6.	1.2-2 秦兴站	近20年常规气象	.资料	
					(./\dots
					×
					%
					H
				1/	
				4/3	
				XXX	
				231	
-					
			1/2/3		
			*/ ///////////////////////////////////		
			% ,		
)		
		$ \wedge$			
		XY			
	-4	<1.			
	-4/4/5/	1			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
	KK-1				

1、气温

2、风景摇统计

6.1.3. 预测因子、模式、范围

1、预测因子

本次评价根据污染物排放特征及环境质量标准,选取 SO_2 、 NO_2 、 PM_{10} 、非甲烷总烃、氟化物、氨、甲苯、氯化氢、硫酸、甲醇、丙酮、硫化氢、二噁英类作为本次评价的预测因子。

2、预测模式

根据评价等级计算,本次大气评价等级为一级。因此,需采用进一步预测模型开展大场,境影响预测与评价。选择《环境影响技术导则 大气环境》(HJ2.2-2018)推荐的 AERMOD 模式进行大气环境影响预测。

3、预测范围

根据《环境影响评价技术导则 大气环境》(HJ2.2-2018)规定,从 该评价项目根据建设项目排放污染物的最远影响距离(D_{10%})确定大气环境影响评价范围,即以项目厂址为中心区域,自厂界外延 D_{10%}的矩形区域作为大气环境影响评价范围, D_{10%}小于 2.5km 时,评价范围边长取 5km。本项目 D_{10%}小于 2.5km,因此,本次评价为大气评价范围为边长取 5km 的矩形区域。

4、预测计算点

计算点包括环境空气保护目标和网格点 护目标见表 6.1.3-1。本次评价的大气评价范围取边长 5km 的矩形区域。预测范围覆盖水价范围,并覆盖各污染物短期浓度贡献值占标率大于 10%的区域,预测范围为边长 5km 的矩形。对预测区域进行网格化处理,以厂址西南角为中心,相对坐标为(0,0),地理坐标为经度 119.94987 E、纬度 32.10537 N。

预测网格点设置:正义方向为 Y 轴正方向,正东方向为 X 轴正方向。

表 6.1.3-1 区域主要环境空气敏感点

	A 71=3			
序号	称	X 轴坐标[m]	Y 轴坐标[m]	地形高度[m]
1	が新星村	763.63	-1988.93	6.22
2	崇福村	2200.13	-1872.07	3.63
3	翻身村	2625.85	2026.51	5.12

6.1.4.分赖侧方案及内容

项目所在地为非达标区,O₃特定百分位数超标,本项目排放主要污染物为 SO₂、NO₂、PM₁₀、非甲烷总烃、氟化物、氨、甲苯、氯化氢、硫酸、甲醇、丙酮、硫化氢、二噁英类等,不排放现状超标因子臭氧。根据《环境影响评价技术导则-大气环境》(HJ2.2-2018)推荐预测情景,本次预测内容及设定情景见表 6.1.4-1。

表 6.1.4-1	本项目环境空气预测方案-	- 临表
1/2 U.I.T-I		グシイン

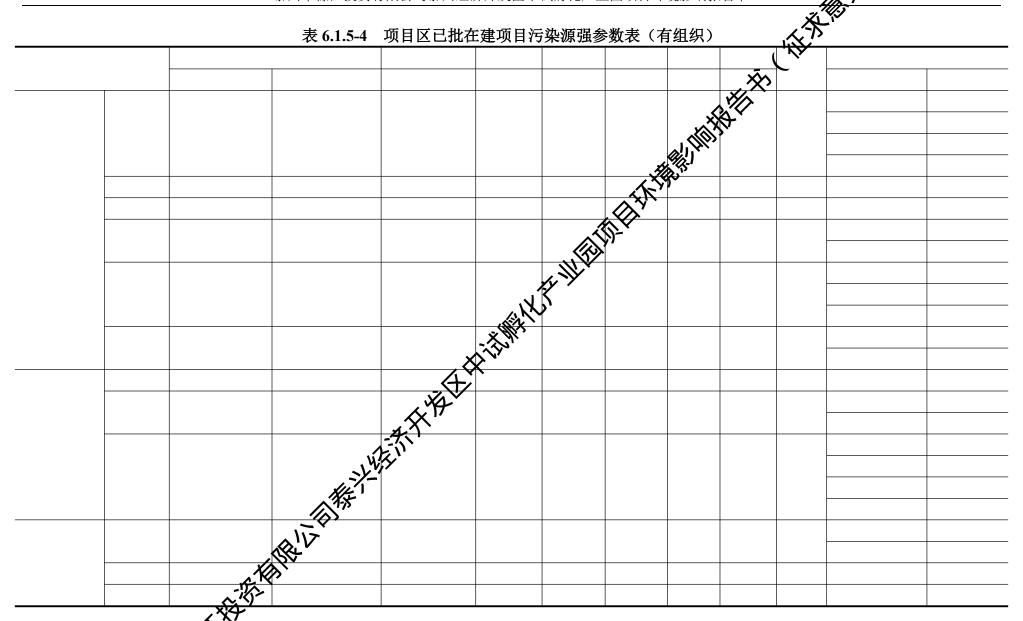
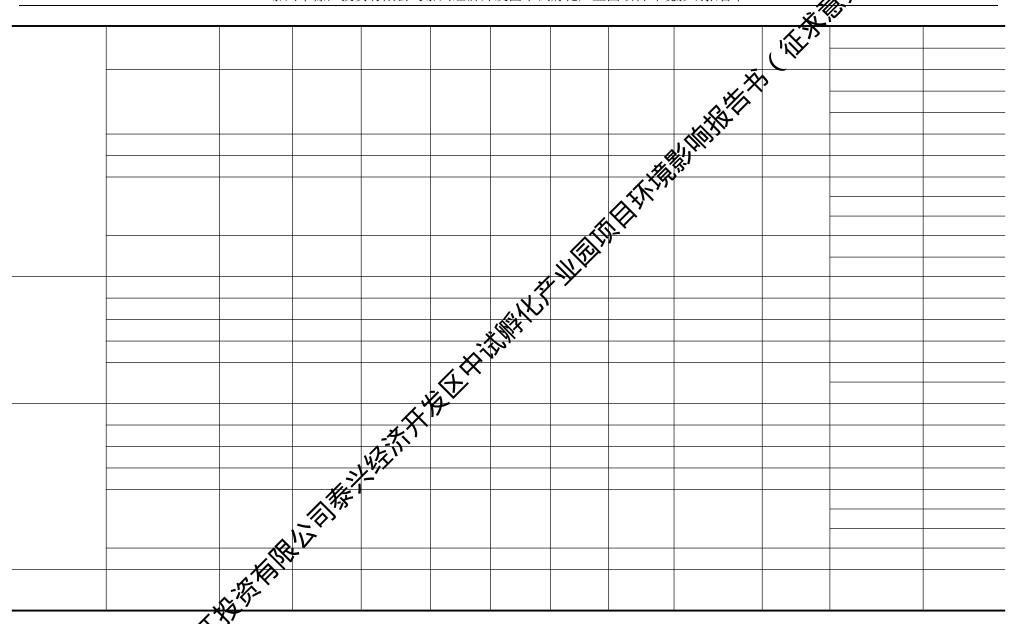

	污染源	污染源 排放形式	、境空气预测方案- 预测内容	评价内容
	新增污染源	正常排放	短期浓度 长期浓度	最大浓度占标率
4/10	新增污染源+其他 在建、拟建污染源	正常排放	短期浓度 长期浓度	叠加环境质量现状浓度原率日平均质量浓度和年 ³ 浓度的达标情况;短期浓情况。
1. H TT 1 & B	新增污染源	非正常排放	1h 平均质量浓度	最大浓度占标率
大气环境防 炉距离	新增污染源	正常排放	短期浓度	大气环境防护距
.1.5. 预测源	强			0,10
1、新增汽	亏染源			MINA.
新增源为	新建项目正常工资	兄和非正常工况	· 记产生的污染源,本	项目,织织废气源强参
表 6.1.5-1、无	组织废气源强参数	数详见表 6.1.5-	2、非正常排放源第	项目之边织废气源强参数详见表 6.1.5-3。
	己批未建项目相		**	*
			会污浊物的 第二	L批未建污染源,具体企
	价范围内存在与本强见表 6.1.5-4 及	さん 4		
		~3	the s	
		∠ ₩`		
		1		
	.4	A A A		
	-4 VZ	KAT THE STATE OF T		
	42 / V/5 /	KAT TO THE PARTY OF THE PARTY O		
	公教 社会	KAT .		
4	和区域等	K K T		
	和这种类型	K K T		
	和这一个	KK TO		
大数数	和这种教业	KK TO		
	ALZ THE	KK T		

		表 6.1.5-1 正	常情况下	中试基地	也有组织废	气排放源	₹参数 	Ž,	
		表 6.1.5-1 正							
					37 WY				
		《新 》	X''						
	表情的	ア							

			中试孵化产业园项	×	NA TENTRAL	
				KIR KINDER		
	長 6.1.5-2 正常	青况下中试基地	无组织发表最大	排放源参数		•
		,,	13 N			
		N. T.				
		A TY				
1,7	\$\frac{\partial \text{*}'}{\partial \text{*}'}					
(3)						

								-15	
							Ž,		
						XA.			
						A THON			
						75-1 1			
				(A)))				
				The state of the s					
				K.					
			4						
1		表 6.1	5 建设项目	非正常排放	女参数表				
		4-4							
		>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\							
	1	41 5							
	NV								
- X	34								
~~~									


	产业园项目环境影响报告书	
	(1/3)	
	W.XX	
	<b>Y</b>	
Signal Control of the		
-XM		
~\\		
4.7		
vzii.		
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		
₩.IV		



							ZL.	Ø .	
							V.		
						,X			
					N. Y.	<b>%</b>			
					~XX	• `			
				30	38-1				
				1/2					
			<b>&lt;</b>						
				7					
		1							
			•						
		-X/11/2,							
	٧.	>_x							
	4								
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
	1.X"								
	(N)								
74									
KI 1									
A75									
117									
. W.									
~-182-									
 <del>\</del>	ı								

							<u> </u>	
					×	>		
				· · · · · · · · · · · · · · · · · · ·	<b>%</b>			
				اراله	<b>%</b> >			
				7773-1				
				<b>&gt;</b> '				
						-		
		13	, <b>'</b>					
		× Willy \						
	,							
	4	.						
	1							
	×17							
	, W. S.							
NE.	1-							
17.5								
~1\Z								
								+
~ K)`								+

T T		<b>长市襟江投</b> 资								ZÍ.	45	
									(	100		
									/××			
								×				
								1/1/197	•			
							,					
		<del></del>	- <del> </del>	· — 111 - <del>L</del> +1	· <del>-</del>	· Votali & V		VH VH /				
	<u> </u>	表 6.1.5-5		□批在建	<b>以日</b> 万多	と源 強 季季	(大)	组织 <i>)</i> ———				
		表 6.1.5-5										
					12	, <b>y</b>						
				, ~~	12/2/2							
				4								
			<b>~</b>									
			-4.7									
			4/3/									
		Kz 1	_									
		175										
	N.											
	2/4/2											
	~ (X)>											



 T	The state of the s		1			1			
							×	(1)	
						175			
					WED.				
				3?	•				

### 6.1.6. 预测参数

### 1、气象数据

本次评价采用泰兴 2023 年全年每天 24 小时的地面气象数据,气象因子包括风向、风速、总云量、低云量和干球温度。泰兴气象站距离本项目 6.2km,站台编号为 58249,站点经纬度为东经 120.05°,北纬 32.16°。

本次评价高空气象数据由国家气象信息中心采用国际上前沿的模式与同化不采(GFS/GSI),建成全球大气再分析系统(CRAS),通过多层次循环同化试验,不断强化中国特有观测资料的同化应用,研制出 10 年以上长度的"中国全球大气再分析中间产品(CRA-Interim,2007-2018 年)",时间分辨率为 6 小时,水平分辨率为 2 里,垂直层次 64 层。提取 37 个层次的高空模拟气象数据,层次为 1000~100hPa 每间 25hPa 为一个层次。高空气象因子包括气压、离地高度、干球温度、露点温度、风向和 2 站台编号为 58249,东经 120.05°,北纬 32.16°。

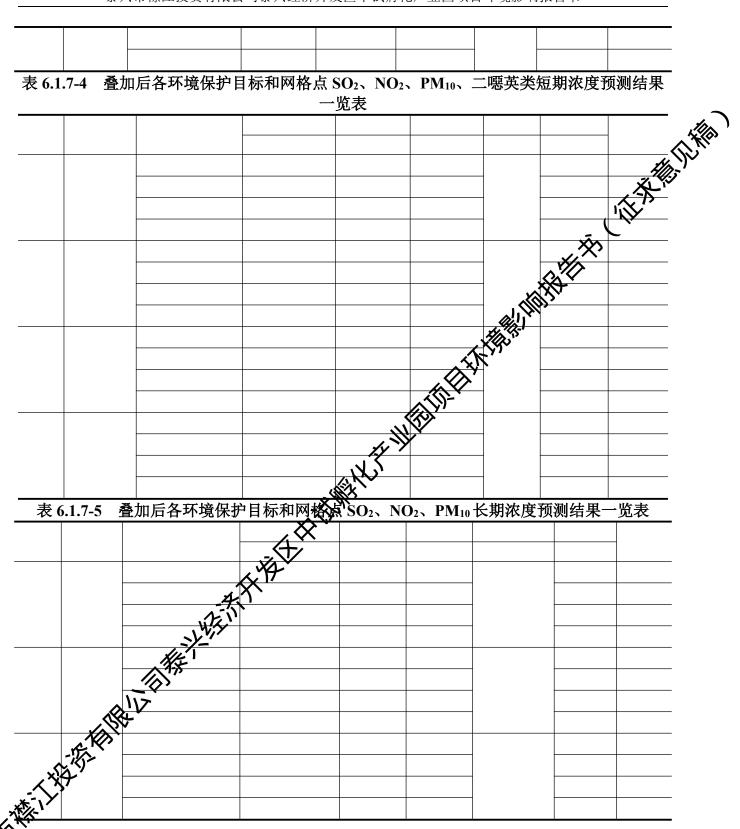
### 2、地形数据

地形数据采用美国 NASA 2000 年的 SRTM90m 为 高程地形数据,精度约为 90m,编号 SRTM61-06。地表参数的选取:本次评价范围内 城市为主,本次选取的地表参数如下表。

扇区 土地利用类型 反照率 波恩比 粗糙度 0.35 1.5 1 0.14 1 1 0°~360° 城市 0.16 2 1 0.18 2

表 6.1.6-1 地表参数表

## 6.1.7. 正常工况预测纸果及分析


### 6.1.7.1. 新增污染源贡献值分析

项目正常说下,预测主要污染物 SO₂、NO₂、PM₁₀、非甲烷总烃、氟化物、氨、甲苯、氯化氢式酸、甲醇、丙酮、硫化氢、二噁英类在各环境保护目标和网格点最大落地的短期浓度和人期浓度贡献值。预测结果见表 6.1.7-1、表 6.1.7-2。

	表 6.1.7-1	初时代	J术W.应为你没贝 	献值及占标率预测	初和不仅	
						١,
					, <u>Š</u> v	
					.0/4	
				•		
					(gv"	
				(1))-Y		
			, 1	<i>y</i> 'y		
			N Kill	<b>,</b>		
			- 13/1/2			
		╛,				
		X	17			
		1:11				
	->\ ^{\\}	<u> </u>				
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
.0	& <u>1/2</u>					
2	<b>&lt;</b> *					
x(2 ¹ /5)						
(' <del>\</del> \\						
,У ——						
'\						
'A		_				
1,2						
12						

	-			
	-			
	-		域域	
	-		<b>,</b>	
	-	X		
	-XX			
, xxx (x)				

							}							4	
															7
							-							١,	个人
							-								//
													X	<b>%</b>	
												×	<b>\\\\</b>		
							_				کیلہ	\$00			
							_			بل					
										Ŕ	مرد				
										〉〉					
									<u> </u>					_	
							-		<u> </u>					-	
度占标	可知, 率为3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	:大,:
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,」
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,上
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,上
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,上
度占标	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,
综上	率为 3	7.59%	<100	0%。	新增	污染	源正常	下污染	毕物 N	O ₂ 的	长期	浓度	贡献	往最	大,上



根据预测结果可知:

本项目非甲烷总烃贡献值叠加区域在建(拟建)项目贡献值、区域削减项目贡献值及背景值后各环境保护目标和网格点短期浓度(小时)满足《大气污染物综合排放标准详解》中限值;

本项目氨、硫酸贡献值叠加区域在建(拟建)项目贡献值、区域削减项目贡献值及背景值后各环境保护目标和网格点短期浓度(小时)满足 HJ2.2-2018 附录 D 中限值;

本项目二氧化硫、二氧化氮贡献值叠加区域在建(拟建)项目贡献值、区域削减项目贡献值及背景值后各环境保护目标和网格点短期浓度(日均98%保证率)满足《环境空气质量标准》(GB3095-2012)二类区标准限值;

本项目 PM₁₀ 贡献值叠加区域在建(拟建)项目贡献值、区域削减项目贡献值及背景**,** 各环境保护目标和网格点短期浓度(日均 95%保证率)满足《环境空气质量标准》(GB3093-2012) 二类区标准限值。

本项目二噁英类贡献值叠加区域在建(拟建)项目贡献值、区域削减项 献值后各环境保护目标和网格点短期浓度满足日本环境厅中央环境审议会制定的环境 。

本项目二氧化硫、二氧化氮、PM₁₀ 贡献值叠加区域在建(拟译)项目贡献值、区域削减项目贡献值后各环境保护目标和网格点年平均质量浓度之足《环境空气质量标准》(GB3095-2012)二类区标准限值。

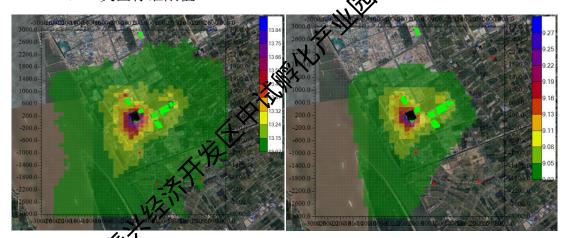



图 6.1.7-1 Schemin 加 后 日均(98% 保证率)、年均浓度等值线分布图(μg/m³)

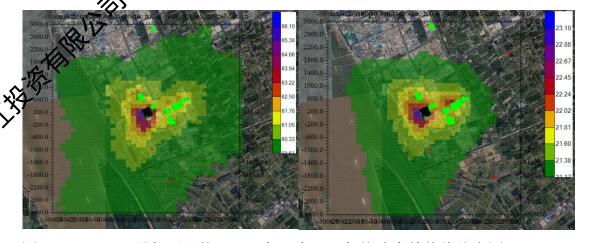
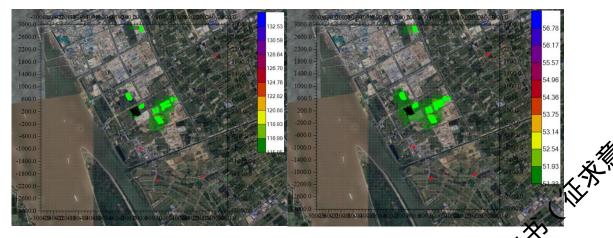




图 6.1.7-2 NO₂ 叠加后日均(98%保证率)、年均浓度等值线分布图(μg/m³)



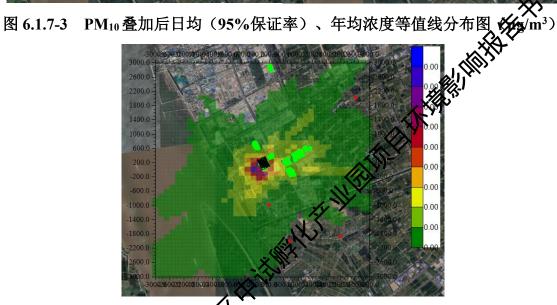



图 6.1.7-4 二噁英类 加后日均浓度等值线分布图 (μg/m³)

# 6.1.7.3. 区域环境质量变化评价

根据《环境影响评价技术等则 大气环境》(HJ2.2-2018)8.8.4 中要求:"当无法获得不 达标区规划达标年的区域污染源清单或预测浓度场时,也可评价区域环境质量的整体变化情 况","计算实施区**发现**减方案后预测范围的年平均质量浓度变化率 k"。根据现状统计结果,拟 建项目评价区域 达标因子为 O3, 鉴于 O3 不属于本项目排放污染物, 本次不需要进行年平均 质量浓度文化率 k 核算。

# 6.1.8 工作正常工况预测结果及分析

本项目非正常工况主要为废气处理系统故障、破损导致的非正常排放,其预测结果见表 6.1.7-1.



表 6.1.8-1 非正常工况网格最大落地浓度贡献值(小时值)

根据预测结果,非正常工况下,非成总烃、甲苯、等对预测范围内各环境敏感保护目标的最大浓度贡献值均满足环境空气成量标准要求,占标率均小于100%。

# 6.1.9. 大气环境防护距离的确定

大气环域。护距离即为保护人群健康,减少正常排放条件下大气污染物对居住区的环境影响,在河流与居住区之间设置的环境防护区域。在大气环境防护距离内不应有长期居住的人群人

根据《环境影响评价技术导则-大气环境(HJ2.2-2018)》要求,"对于项目厂界浓度满足大气污染物厂界浓度限值,但厂界外大气污染物短期贡献浓度超过环境质量浓度限值的,可以自厂界向外设置一定范围的大气环境防护区域,以确保大气环境防护区域外的污染物贡献浓度满足环境质量标准"。由本项目预测情况可知,项目厂界及厂界外污染物浓度满足大气污染物厂界浓度限值,因此,不需设置大气环境防护距离。

# 6.1.10. 异味影响分析

本项目中试过程及过程分析室使用的甲醇、乙腈、丙酮、乙二胺、氨水等,污水站挥发的 氨、硫化氢等物质均有异味,异味气体主要危害为:

- ①危害呼吸系统。人们突然闻到臭味,就会产生反射性的抑制吸气,使呼吸次数减少,深度变浅,甚至会暂时停止吸气,妨碍正常呼吸功能。
  - ②危害循环系统。随着呼吸的变化,会出现脉搏和血压的变化。
- ③危害消化系统。经常接触臭味,会使人厌食、恶心,甚至呕吐,进而发展为消化功能减退。
- ④危害内分泌系统。经常受异味刺激,会使内分泌系统的分泌功能紊乱,影响机体的代谢活动。
- ⑤危害神经系统。长期受到一种或几种低浓度臭味物质的刺激、会引起嗅觉脱失、嗅觉疲劳等障碍。"久闻而不知其臭",使嗅觉丧失了第一道防御功能、但脑神经仍不断受到刺激和损伤,最后导致大脑皮层兴奋和抑制的调节功能失调。
- ⑥对精神的影响。异味使人精神烦躁不安,思想不美中,工作效率减低,判断力和记忆力下降,影响大脑的思考活动。

根据《环境空气监测质量保证手册》中多个的各恶臭物质浓度和恶臭强度关系见下表。

表 6.1.10-	1 恶臭浓度与强度的	关系(单位: ppm)	
	X ^{II}		
-2	K1)		
V	<b>'</b>		
	表 6.1.10-2 各恶臭物	质强度分级	
**			
*-1>			

浓度单位 ppm 跟 mg/m³的换算关系按下式计算:

 $mg/m^3 = M/22.4 \cdot ppm \cdot [273/(273 + T)] * (Ba/101325)$ 

上式中:

M—为气体分子量; ppm—测定的体积浓度;

T—温度; Ba—压力。

根据上式可折算出常温常压下(T=25°C、Ba=101325 帕) $NH_3$  以及  $H_2S$  浓度与强度的对应关系,具体情况见下表。

	表 6.	1.10-3 恶身	臭体积浓度-	与强度关系	(单位: mg/m³)	)
						7,405
根据进一	一步预测结	果,参照"羌	- 长于淮安市廷	建设项目环境	意影响评价中增;	加嗅阈值评价包含的
通知"中的附	件, 本项目	涉及各类异	异味污染物吗	息阈値対照を	<b>}析见下表。</b>	- Cills
	117 1 216					~ <b>*</b>
		次 0.1.1	10-4 土安尹	^{异味污染物影}	<b>衫啊牙</b> 你	
						<u> </u>
					$\sim$	

根据上表综合分析,本项目氨气、硫化氢恶臭气体发大落地点浓度均低于其相应的恶臭污染物厂界标准限值,氨气、硫化氢厂界恶臭气体发为"勉强能感觉到气味"。其它甲醇、乙腈、丙酮异味污染物在区域小时最大落地浓度均低于相应嗅阈值,因此本项目恶臭对周围环境影响可接受。

# 6.1.11. 氟化物影响分析

(1)氟化物对人体的环境影响分析

①大气污染物

本项目排放的大**%**党染物中有氟化物,吸入人体后会通过损伤肺脏和呼吸系统对人体健康造成影响,这些污染物也会进入血液循环,并到达人体其他部位。

氟化物 是对眼、鼻、皮肤和咽喉有强烈的刺激及腐蚀作用,容易引起眼、鼻、咽喉粘膜充血和发症,当吸入氟化物的浓度很高时会引起支气管炎、肺炎等疾病。氟骨病患者会有合并产药伤,氟可以进入脑组织,从而在脑组织中积累,损害脑组织细胞,对脑组织细胞产生。如作用。地域性氟中毒的患者常表现为情绪不稳定、头痛、记忆力减退等中枢神经系统疾病。

# ②废水污染物

当人类长期饮用氟的浓度高于 1~1.5mg/L 的水时,则易患斑齿病,如果水中氟化物的含量高于 4mg/L 时,则可致氟骨病。人体内的氟过量会引起全身性毒性,不仅损害骨骼和牙齿,它可累积到身体的各组织器官,对各组织器官产生毒副作用。

本项目工艺废气中氟化物经 RTO 焚烧处理后达标排放,大气污染物中氟化物对人体环境风险可接受。本项目废水中氟化物经基地污水处理站预处理后能够满足开发区工业污水处理厂接管标准,另外企业内设应急池和初期雨水池,园区构建了三级防控体系,如果发生事故含氟废水基本不会进入外部水环境。

# (2)氟化物对植被的影响分析

气态或可溶性氟化物通过叶片气孔或树皮进入植物体内,也能通过植物根部吸收,然为这转至叶片。微量的氟不影响植物正常生长发育,当氟化物积蓄到一定量时,植物表现出树理症状。未成熟叶片成为首先受害部位,典型症状是叶片的尖部和外缘出现枯萎斑,成块由黄色逐步发展为褐色,受害处和健康叶片形成界限明显的红棕色带状区,常使植物或精的幼叶和嫩芽枯死,严重者影响到成熟叶片,植株表现为大量落叶。

氟可与土壤中大量存在的有机质如腐殖质和有机酸起络合作风光成螯合态氟或有机束缚态氟,从而使土壤中氟的生物有效性降低。一般认为过量氟抑制、些酶的活性,特别是与生物体能量代谢有关的烯醇化酶。两价离子在生物体内是多种的和辅酶的重要组成部分,氟与 Ca²⁺、Mg₂₊等两价金属离子作用,从而影响了酶的活性。

根据《环境空气质量标准》适用于农业和林龙区的植物生产季平均氟化物浓度不得大于2µg/dm²·d,以此分析,根据本项目氟化物龙环境影响预测结果,在正常生产时,本项目排放的氟化物对树木的影响不大。

# 6.1.12. 大气影响预测结论

(1)正常工况环境影响

新增污染源预测结果**水**:本项目新增污染源正常排放情况下污染物 NO₂ 的短期浓度贡献值最大,最大浓度**水**率为 37.59%<100%。新增污染源正常排放下污染物 NO₂ 的长期浓度贡献值最大,最大浓度占标率为 4.75%<30%。

新增污染 叠加后的预测结果表明:

本项 非甲烷总烃贡献值叠加后各环境保护目标和网格点短期浓度(小时)满足《大气污染物系合排放标准详解》中限值;

》 本项目氨、硫酸贡献值叠加后各环境保护目标和网格点短期浓度(小时)满足 HJ2.2-2018 附录 D 中限值:

本项目二氧化硫、二氧化氮贡献值叠加后各环境保护目标和网格点短期浓度(日均 98%保证率)满足《环境空气质量标准》(GB3095-2012)二类区标准限值;

本项目 PM₁₀ 贡献值叠加后各环境保护目标和网格点短期浓度(日均 95%保证率)满足《环 境空气质量标准》(GB3095-2012)二类区标准限值;

本项目二噁英类贡献值叠加区域在建(拟建)项目贡献值、区域削减项目贡献值后各环境 保护目标和网格点短期浓度满足日本环境厅中央环境审议会制定的环境标准。

本项目二氧化硫、二氧化氮、PM₁₀ 贡献值叠加后各环境保护目标和网格点年平均质量流足《环境空气质量标准》(GB3095-2012)二类区标准限值。
(2)非正常排放情况分析 度满足《环境空气质量标准》(GB3095-2012)二类区标准限值。

# 6.1.13. 污染物排放量核算

	青况分析	- C.4
根据预测结果,	非正常排放对外环境影响程度比正常	工况显著增加,对外环境的影响比正
常工况明显加大。同	由此可知,RTO 焚烧系统如发生故障:	非正常排放的废气。用边环境影响较
严重,需采取严格的	的风险预防措施,必要时采取停产措就	
(3)大气环境防护	由此可知,RTO 焚烧系统如发生故障的风险预防措施,必要时采取停产措施产距离 项目无需设置大气环境防护距离。	A STATE OF THE PARTY OF THE PAR
根据预测,本理	页目无需设置大气环境防护距离。	
6.1.13. 污染物排放量	量核算 🥠	
根据环境影响记	平价审批内容和排污许可证申请与核	<b>♥</b> ₹要求,给出大气污染物排放量核算结
果,具体详见表 6.1	12-1~表 6.1.12-4。	
	表 6.1.12-1 大气污染 有组织排	放量核算表
	XXX	
	×17	
	SW.X	
	<b>1</b>	
alv	`	
RIV		
E KINDLY		
XX TO THIS LIVE		
* TANK BENEVILLE		
TANK TO THE PARTY OF THE PARTY		
A THE PARTY OF THE		
THE PARTY OF THE P		
A THE PARTY OF THE		

The state of the s					
					15.
THE THE PARTY OF T					×××
THE THE PARTY OF T					
				1003	<u> </u>
				XXX	
				<b>*</b>	
ALL THE STATE OF T				-	
ALL HER LEADING TO THE REAL PROPERTY OF THE PARTY OF THE					
ALLE THE THE PARTY OF THE PARTY			/y W		
A LINE OF THE PARTY OF THE PART					
ALL LANGE BOOK OF THE PARTY OF			XXXX		
A. I. H.			XXXX		
THE THE PARTY OF T			7		
ATT HE STATE OF THE PARTY OF TH		XY)			
ATT AND THE REPORT OF THE PARTY		-4.X			
AND THE PART OF TH		, V.Z.\\			
A. I.		2 <u>7</u>			
R. I.					
R. I. H. T.	•	117			
		<b>-</b>			
	15/4				
	(X) ^(X)				
	£-1>''				
	<b>*</b>				

				Z/m
				XL
				(,///
			——————————————————————————————————————	<b>.</b>
			W XIV	
			all	
		- A	<del>28.</del>	
			<b>1</b> ~	
		11/2		
		14 M		
	表 6.1.12-3 大气污	染物年排放量核質表		•
	190 01212 0 70 (10	染 <b>物</b> 手排放量核算表		
		<b>M</b> ,		
	$\sim$			
	4			
	XYY			
	41			
	15.11.			
	>\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>			
*	<u>//                                   </u>			
	×			
BK'				
*(X/ ^(X) )				
-<37				
XX				
I		1	1	

	表 6	.1.12-4 污染源非	正常排放量	核算表			
						-	
		.1.12-4 污染源非					
				III-DIX		-	
			XX			_	
						-	
. 地表水环境影响	147 - 4 147 - 4					-	
A THINK I'V	<b>&gt;</b>					-	
XXXXXX				_			

1、污水排放情况

本项目废水主要有中试工艺废水、设备清洗废水、废气喷淋废水、中试事故冲洗废水等、过程分析室废水、生活污水、冷却系统溢流废水、蒸汽冷凝废水、纯水制备废水、初期雨水、检修废水等,经收集后接入基地污水站统一处理(涉重或第一类污染物的废水需预处理达标后接入污水站)。项目废水经预处理达接管标准后,与纯水制备废水、蒸汽冷凝废水、循环系统溢流废水混合,通过园区污水管网纳入泰兴经济开发区工业污水处理厂进行集中处理。

# 2、评价等级

根据《环境影响评价技术导则地表水环境》(HJ/T2.3-2018),本项目地表水环境影响评价等级为三级 B。地表水环境影响评价等级为三级 B的水污染影响型建设项目可求进行水环境影响预测,只需分析项目水污染控制和水环境影响减缓措施的有效性,以及水光污水处理设施的环境可行性。

# 3、影响预测

本报告对水环境影响不做预测,项目排放废水对长江水体。影响分析引用《泰兴经济开发区 5 万吨/日工业污水处理工程项目环境影响报告书》中域、环境影响预测结论。

正常排放情况下,污水处理厂尾水对泰兴滨江水厂水口影响较小,综合生活污水排放的影响,泰兴滨江水厂(工业用水)取水口 COD 增量为 0.11mg/L,氨氮增量为 0.05 (0.09) mg/L,总磷增量为 0.002mg/L,苯胺类增量为 0.0000m/L,硝基苯类增量为 0.0033mg/L;芦坝港 COD增量为 0.12mg/L,氨氮增量为 0.06 (0.04) mg/L,总磷增量为 0.002mg/L,苯胺类增量为 0.0013mg/L,硝基苯类增量为 0.002mg/L,苯胺类增量为 0.0013mg/L,硝基苯类增量为 0.002mg/L。泰兴市滨江水厂工业用水取水口和芦坝港 COD、氨氮和总磷的浓度增量与长江水水口处本底监测值叠加后符合II类水要求,滨江水厂为工业用水取水口和芦坝港苯胺类水质基苯类浓度满足《地表水环境质量标准》(GB3838-2002)集中式生活饮用水地表水水地苯胺 0.1mg/L、硝基苯 0.017mg/L 特定标准限值。

事故排放情况下,泰兴滨江水厂工业取水口和芦坝港水质局部超II类水。根据原《泰兴市滨江污水处理、限公司入河排污口设置论证报告》可知,滨江污水处理厂排污口实际入江污水量为9.3%,1/d,尾水经人工湿地处理后达到地表IV类水质标准后排入新段港和友联中沟并最终进入工泰兴工业、农业用水区,最不利排水方案下,尾水排放对泰兴市滨江水厂工业用水取入口或芦坝港影响较大;本次工业排污口设置后,4.5万 t/d 生活污水从新段港排入长江,4.5万 t/d 工业污水从洋思港排入长江,新段港无特征因子苯胺和硝基苯排出,结合模型计算结果可知,尾水排放对泰兴市滨江水厂工业用水取水口和芦坝港影响较小。

总体而言,项目尾水经滨江中沟-洋思港排入长江泰兴工业、农业用水区,正常工况排放对受纳水体影响程度较小。

# 4、结论

本项目废水经预处理后,与纯水制备废水、蒸汽冷凝废水、循环系统溢流废水混合,通过 园区污水管网纳入泰兴经济开发区工业污水处理厂进行集中处理,尾水经洋思港汇入长江。本 项目污水接管污水处理厂可行,污染物能得到有效的去除,对周边水体的影响小,因此本项目 CITY TO THE 地表水环境影响是可接受的。

# 6.3. 地下水环境影响预测与评价

# 6.3.1. 区域水文地质概况

# 1、地形地貌

拟建场地位于泰兴经济开发区锦江路南侧、院士路西侧, 拟建场地原 期间已抛荒,场地标高在2.31~4.10米之间,地势起伏较大。地貌 拟建场地在地貌 上为长江三角洲平原区高沙平原。

# 2、地质构造

据区域地质资料,本地区为长江冲积平原的河漫滩地。第四纪全新统冲积层,具有典型 三角洲河相冲淤地貌特点,江滩浅平,江流曲缓。地势间平坦,略呈东北向西南倾斜,一般 高程 3.5 米左右。沿江筑有填土大堤,堤顶高程大坡 7.3 米,堤外芦苇丛生,堤内为农田。土 壤系长江冲积母岩逐渐发育而成,表层为亚类学,厚约1-2米,第二层为淤积亚粘土,厚约2-3 米, 第三层为粉砂土, 厚约 15 米。 ₩ቖ地震烈度为6度。区内无采空区、崩塌、滑坡、泥 石流、冻土等特殊地形、地貌。

# 3、地层特性

孵化产业园项目岩土工程勘察报告》,在钻探所达深度范围内, 深度范围内的土层分布欠均匀、稳定,其地质年代均为第四纪全新世 拟建场地在本次量 全要由粉土、粉砂、软粘土等。本场地内自地面起由上而下的土层情况见 表 6.3-1。

表 6.3-1 地基土分布特征一览表

±	也层层工及	地层描述
**************************************	(1) 素填土	表层大部分地段为耕土,含植物根茎,其下土质填料以粉土质为主,稍密、很湿,局部为粉质粘土质,软塑-流塑。灰色局部灰黄色、灰黑色,层厚不均匀,在 1.3-3.7 米不等。该层土物理力学性质较差,不均匀,表层受近期人为活动影响较大,为长期自然风化沉积而成,松密不均,承载力较低,为低强度高压缩性地基土。该层土物理力学性质差,其主要指标 w、e、Es 均值分别为 34.4%、0.978、2.84Mpa。
	(2) 粉砂	灰色,稍密状态为主,局部松散,饱和,矿物成分以石英、长石、云母片为主,颗粒呈次圆状,颗粒级配良,粘粒含量均值为 4.9%。揭示层厚在 1.9-4.3 米之间。 该层土物理力学性质一般,其主要指标 w、e、N、Es 均值分别为 29.4%、0.844、10.6、8.40Mpa,

	为中等压缩性地基土。
(3) 粉土夹粉	灰色,局部灰黄色,稍密状态为主,很湿,含云母碎片,中夹松散一稍密状、饱和的粉砂及软塑-流塑的粉质粘土薄层,具层理。该层土无光泽反应、摇震反应中等、干强度为低,韧性
砂、粉质粘土	为低。层厚不均匀在 1.4-5.5 米之间。 该层土物理力学性质较差,其主要指标 w、e、N、Es 均值分别为 33.5%、0.947、5.9、5.27Mpa, 为中等偏高压缩性地基土。
(4) 粉砂	灰色,稍密一中密状态,饱和。矿物成分以石英、长石、云母片为主,颗粒呈次圆状,颗粒 级配良,粘粒含量均值为 4.5%,钻探揭示中夹少量的粉土薄层。该层土厚度不均匀,揭示 厚在 2.7-7.1 米之间。 该层土物理力学性质一般,其主要指标 w、e、N、Es 均值分别为 29.1%、0.837、15.2、846Mpa,
	为中等压缩性地基土。
(5) 粉质粘土与 粉土互层	灰色一灰黄色,粉质粘土以软塑状为主,局部流塑,粉土为潮湿、稍密状,该层大成层性差,呈互层状分布。揭示层厚在 7.0-13.1 米之间。 该层土物理力学性质较差,其主要指标 w、e、II、Es 均值分别为 34.3%、0.59 1.16、4.96Mpa,为中等偏高压缩性地基土。
(6) 粉砂夹粉土	灰色,中密状态为主,局部密实,饱和,中夹中密、湿的粉土薄层, 两夹结石。矿物成分以石英、长石、云母片为主,颗粒呈次圆状,颗粒级配不良,粘粒。 均值为 3.8%,钻探揭示中夹少量的结石。揭示最大层厚 10.3 米。该层土物理力学性质较好,其主要指标 w、e、N、Es 均值分别为 28.2%、0.815、24.9、12.32Mpa,为中等压缩性地基土。
(7) 粉砂、粉土	灰色,粉砂中密状态为主、饱和,粉土为中密状态为。湿,中夹软塑的粉质粘土,该层土成层状态。如分地段只有层状分布。偶束结石,这种原度的大,类据较
がむ、初工 夹粉质粘土 薄层	成层性差,部分地段呈互层状分布,偶夹结石。
13/4	VA 1 - 4 vers. He leav. G T

# 4、水文条件

# (1)地下水类型

根据勘察资料,拟建区浅层地下水为潜水类型,含于勘探深度范围内所有土层中,勘察期间实测初见水位埋深在 0.54~2.30 水之间,待水位稳定后实测稳定水位埋深在 0.59~2.35 米之间(相当于标高 1.71~1.78 米之间),地下水位受入渗补给、自然蒸发、排泄等因素的影响。根据邻近工程相关资料及之域水文地质资料,可知拟建区地下水位年变化幅度大致在 2.0 米左右。

勘探深度范围内无承压水层。

(2)地下水外给、径流及排泄条件

由大型藏条件不同,孔隙潜水与承压水具有完全不同的补、径、排条件。本区地处亚热带湿水入候带,雨量充沛、地势平坦,大气降水和农田灌溉水入渗是其主要补给途径。此外,工区内河网密布,天然状态下,地表水与地下水相互补给、排泄,即丰水期地表水补给潜水、枯水期潜水补给地表水。受地形地貌条件制约,潜水接受补给后一般由高处往低处缓慢径流。由于区内水位坡降小,含水层渗透性差,故潜水径流强度微弱。潜水的排泄方式主要有蒸发、枯水期泄入地表水体、越流补给承压水及民井开采,其中蒸发是最重要的排泄方式。

在开采状态下承压水的补给来源主要有三项:潜水、地表水及含水层(组)之间的相互补给。由于第I承压含水层组隔水顶板主要由粉质粘土、粉土、夹薄层粉砂组成,且在长江三角洲局部地区粉质粘土隔水层"缺失"或"基本缺失",故潜水与第I承压水之间存在较为直接的水力联系,而第II、第III承压含水层又多与第I承压含水层上下贯通,存在垂向补给。天然状态下,承压水的水力坡度较小,地下水水平径流缓慢,总体上是由西南往东北缓慢径流。承压地下水由于埋藏深,排泄途径以人工开采和侧向径流为主。

# 6.3.2. 地下水预测

本项目地下水环境影响评价等级为三级,根据《环境影响评价技术导则,也下水环境》 (HJ610-2016)的要求,地下水三级评价采用解析法或者类比分析法,本次,水环境影响评价预测采用解析法,通过模拟典型污染因子在地下水中的迁移过程,进步分析污染物影响范围和超标范围。

污染物在地下水系统中的迁移转化过程十分复杂,它包括"发、溶解、吸附、沉淀、生物吸收、化学和生物降解等作用。本次评价在模拟污染物运动,散时不考虑吸附作用、化学反应等因素,只考虑对流弥散作用。

# 6.3.2.1. 预测范围

根据《环境影响评价技术导则一地下水水流》(HJ610-2016),拟建项目位于江苏省泰兴经济开发区锦江路南侧、院士路西侧,区域水文地质条件单一,地下水环境影响评价范围采用自定义法确定,结合项目占地规模、攻域水文地质情况,确定以建设项目厂区为中心,以长江、天星港、胜利中沟、芦坝港为边界的区域作为地下水评价范围,具体范围见图 6.3-1。

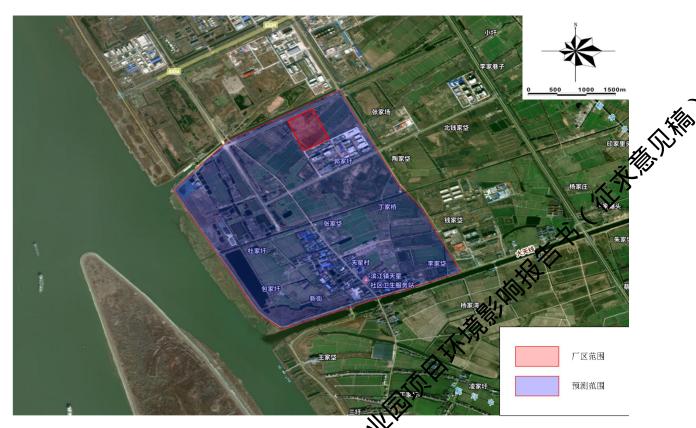



图 6.3-1 地下水环境污染风险预测评价范围

# 6.3.2.2. 预测时段

依据《环境影响评价技术导则一地下水场境》(HJ610-2016),预测时段设定为发生废水 泄漏后的 100、1000 天及 30 年。

# 6.3.2.3. 情景设置

建设项目须对正常状况(建设项目的工艺设备和地下水环境保护措施均达到设计要求条件下的运行状况)和非正常状况(建设项目的工艺设备或地下水环境保护措施因系统老化、腐蚀等原因不能正常运行状况)分别进行预测。

(1)正常工况

拟建项式上程防渗措施均按照设计要求进行,在正常工况状态下,本项目运行不会对区域 地下水域,造成污染。

②非正常工况

在防渗措施发生事故的情况下,此时污废水更容易经包气带进入地下水。本项目运营过程中产生中试区废水(含工艺废水、设备清洗等)、过程分析室废水、基地公辅设施工程废水、纯水制备废水、蒸汽冷凝废水、循环系统溢流废水。其中中试区废水、过程分析室废水、基地公辅设施工程废水经厂区污水站处理达标后接管。若厂区内污水站防渗层由于老化、腐蚀等原

因出现破裂后,会导致池内废水持续泄漏进入地下水系统中。此时,按风险最大原则,污染物通过包气带直接进入潜水含水层。

# 6.3.2.4. 预测因子及污染源概化

根据建设项目工程特点,选取污染物浓度相对较高或是有代表性的污染物作为预测模拟因子。因此本次地下水环境影响预测评价中,选取 COD、氨氮、氟化物作为预测因子,模拟其在地下水系统中随时间的迁移过程。

虽然 COD 在地表含量较高,但 COD 一般不作为地下水中的污染评价因子。以高锰酸钾溶液为氧化剂测得的化学耗氧量,称为高锰酸盐指数,以酸性重铬酸钾法测得的值称为化学需氧量(COD),两者都是氧化剂,氧化水中的有机污染物,通过计算氧化光的消耗量,计算水中含有有机物耗氧量的多少,但在地下水中,一般都用高锰酸盐指数块。目前,《地下水质量标准》(GB/T 14848-2017)选取的有机物耗氧量指标为高锰酸盐指数。在地下水环境影响预测部分,为保证预测结果可以进行对标分析,采用高锰酸盐等数值作为地下水环境影响预测因子 COD 的标准值。因此,模拟和预测污染物在地下水,为迁移扩散时,用高锰酸盐指数代替 COD,其含量可以反映地下水中有机污染物的大小。数据积累表明高锰酸盐指数约为 COD的 40%~50%,从"最大环境影响"(即"最大不和光件")的角度考虑,本次在地下水环境影响预测部分将高锰酸盐指数的浓度数值等同于光,可以是水接入后污水站中 COD、氨氮及氟化物的浓度数值,分别约为 987mg/L、14mg/k 3mg/L。

# 6.3.2.5. 预测方法

1、预测模式

考虑到各个预测情景,我自潜在地下水污染源具有低流量、长时间的特性,本次评价采用《环境影响评价技术》则-地下水环境》(HJ610-2016)推荐的一维稳定流动一维水动力弥散解析解方程进行计算。

项目调整位于地下,如若建设项目调节池防渗措施发生故障,池内污水泄漏具有长时间、低流量增强,因此用点源持续泄漏模型。概化条件为一维半无限长多孔介质柱体,一端为定浓度边界。其解析解为:

$$\frac{C}{C_0} = \frac{1}{2} \operatorname{erfc}(\frac{x - ut}{2\sqrt{D_L t}}) + \frac{1}{2} e^{\frac{ux}{D_L}} \operatorname{erfc}(\frac{x + ut}{2\sqrt{D_L t}})$$

式中:

x—距注入点的距离, m:

t—时间, d;

 $C_{(x, t)}$ —t 时刻 x 处的示踪剂浓度,g/L;

C₀—注入的示踪	系剂浓度,g/L;		
u—水流速度,ı	m/d;		<b>A</b>
Dr—纵向弥散系	≤数, m²/d:		
arfo() A提美i	√, ₩/ ₁		X III
enc( )— 未 庆左	<b></b>		
2、模式中参数	的确定		- ( /v
(1)渗透系数及水	〈力坡度		渗透系数 (cm/s) 5.79×10 ⁻⁵ ~1.16×10 ⁻⁴ 1.16×10 ⁻⁴ ~5.79×10 ⁻⁴ 5.79×10 ⁻⁴ ~1.16×10 ⁻³
渗透系数取值参	≷数详见表 6.3-2。根据厂区	【地勘资料及本地区水文	「地质 <b>、</b> 本项目区的
ムモズ坐フレナ中岸	FA Bill 1 205 103 / Tal	0.0001	r dillija.
<u>参</u> 透系	更分别为 1.325×10 ⁻³ cm/s 及 (	J.0001。	<b>%</b> 1`
	表 6.3-2 渗	透系数经验值	<u>v</u>
岩性名称	主要颗粒粒径(mm)	渗透系数(maxx	渗透系数(cm/s)
轻亚黏土		0.05	5.79×10 ⁻⁵ ~1.16×10 ⁻⁴
亚黏土	0.05~0.1	0/25	1.16×10 ⁻⁴ ~2.89×10 ⁻⁴
黄土		25~0.5	2.89×10 ⁻⁴ ~5.79×10 ⁻⁴
粉土质砂		0.5~1.0	5.79×10 ⁻⁴ ~1.16×10 ⁻³
粉砂	0.1~0.25	1.0~1.5	1.16×10 ⁻³ ~1.74×10 ⁻³
细砂	×	5.0~10	5.79×10 ⁻³ ~1.16×10 ⁻²
中砂	0.25~0.5	10.0~25	1.16×10 ⁻² ~2.89×10 ⁻²
粗砂	0.25~0.5	25~50	2.89×10 ⁻² ~5.78×10 ⁻²
砾砂	0.5 1	50~100	5.78×10 ⁻² ~1.16×10 ⁻¹
圆砾		75~150	8.68×10 ⁻² ~1.74×10 ⁻¹
卵石	1-55	100~200	1.16×10 ⁻¹ ~2.31×10 ⁻¹
块石	1.0~2.0	200~500	2.31×10 ⁻¹ ~5.79×10 ⁻¹
漂石		500~1000	5.79×10 ⁻¹ ~1.16×10 ⁰

(2)孔隙度

隙度的大小与颗粒的排列方式、颗粒大小、分选性、颗粒形状以及胶结程度 隙度大小见下表,项目厂区的孔隙度取值为0.4。

表 6.3-3 松散岩石孔隙度参考值(据弗里泽,1987)

松散岩体	孔隙度(%)	沉积岩	孔隙度(%)	结晶岩	孔隙度(%)
粗砾	24-36	砂岩	5-30	裂隙化	0-10
细砾	25-38	粉砂岩	21-41	结晶岩	0-10
粗砂	31-46	石灰岩	0-40	致密结晶岩	0-5
细砂	26-53	岩溶	0-40	玄武岩	3-35
粉砂	34-61	页岩	0-10	风化花岗岩	34-57
粘土	34-60			风化辉长岩	42-45

(3)地下水实际流速

地下水实际流速的确定按下列方法确定:

### $U = K \times I/n$

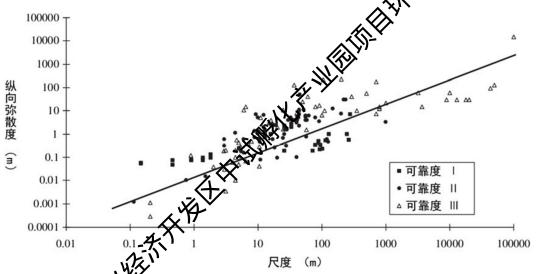

其中: u 为地下水实际流速, m/d; K 为渗透系数, m/d; I 为水力坡度; n 为孔隙度。区域地下水流速计算结果见下表。

表 6.3-4 计算参数一览表

参数含水层	水流速度(m/d)
项目建设区含水层	0.00029

(4)弥散度的确定

D.S.Makuch (2005)综合了其他人的研究成果,对不同岩性和不同尺度条件,外质的弥散度大小进行了统计,获得了污染物在不同岩性中迁移的纵向弥散度,并存在发度效应现象(图 6.3.2.-1)。对于弥散度值,在充分考虑其尺度效应条件下,结合其他地区内和野外试验结果,本着风险最大化原则,对本次评价范围潜水含水层,纵向弥散度取了m。



於 松散沉积物的纵向弥散度与研究区域尺度的关系 表 6.3-5 含水层弥散度类比取值表

	1C 0.5-5	ロググがかえへ		
粒径变化石罗(mm)		均匀度系数	指数m	弥散度a _L (m)
<b>**</b> +0.7		1.55	1.09	3.96
0.5-1.5		1.85	1.1	5.78
1-2		1.6	1.1	8.8
2-3		1.3	1.09	13.0
5-7		1.3	1.09	16.7
0.5-2		2	1.08	3.11
0.2-5		5	1.08	8.3
0.1-10		10	1.07	16.3
0.05-20		20	1.07	70.7

弥散系数的确定按下列方法取得:

其中: DL—纵向弥散系数, m²/d;

U—地下水实际流速, m/d;

al—纵向弥散度, m;

m—指数, m取1.1。

计算参数结果见下表。

# 表 6.3-6 计算参数一览表

					<u> </u>
参数	水流速度U	纵向弥散系数	工况	污染》	原强C ₀ (mg/L)
含水层	(m/d)	$D_L (m^2/d)$	情况	$COD_{Mn}$	氨氮 氟化物
项目建设区含水层	0.00029	0.00127	非正常		*/X'

(5)评价标准

# 表 6.3-7 污染因子超标影响限值(prox

_		THE STATE OF THE PROPERTY OF T	
	序号	污染物名称	
	1	高锰酸盐指数	
	2	<b>氨</b> 氮	_
	3	氟化物 人名	

# 6.3.2.6. 预测结果与评价

将上述预测参数代入地下水溶质运移解**对**模型中,计算污染物在非正常工况渗漏 100d, 1000d 及 30a 的迁移情况,预测结果**以**表 6.3-8。

表 6.3-8 1000 100d 和 30a 地下水中污染物迁移情况

	NH.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						
	10	•						
	W.V							
- 12°								
-XX								
(A-1)								
)								

ı			1	I I		ı		Ī	ı		1
污	杂物超杨	扩散距离	·	-9°		'				'	- A
			表	6.3-9	污染物	勿扩散达	标距离				N. A.
											,/\hat{\kappa}
										×Σν	
										<i>*</i> // <i>&gt;</i>	
									<u>ر ۲</u>	(A)	
					1				<u> </u>	<del>)</del>	

由上表可知,区域地下水流缓慢,如污染物渗水地下水,污染物随地下水迁移速度较慢,100d污染物(高锰酸盐指数)扩散达标距离 1000d污染物(高锰酸盐指数)扩散达标距离为 5m,30a污染物(高锰酸盐指数)扩散达标距离为 18m; 100d污染物(氨氮)扩散达标距离为 2m,100d污染物(氨氮)扩散达标距离为 4m,30a污染物(氨氮)扩散达标距离为 14m;100d污染物(氟化物)扩散不淡及超标,1000d污染物(氟化物)扩散达标距离为 2m,30a污染物(氟化物)扩散达标距离为 8m。

# 6.3.2.7. 预测结论

(1)本项目在施力量保证较好、运营过程中各项措施充分落实,污染防渗措施有效情况下(正常工况下、建设项目对区域地下水质不产生影响。在非正常工况下,会在厂区调节池周边较小范围为污染地下水。污染物模拟预测结果显示:调节池持续性泄漏时,100d污染物(高锰酸盐指数)扩散达标距离为5m,30a污器数(高锰酸盐指数)扩散达标距离为5m,30a污染物(高锰酸盐指数)扩散达标距离为18m;100d污染物(氨氮)扩散达标距离为14m;100d污染物(氟化物)扩散不涉及超标,1000d污染物(氟化物)扩散达标距离为2m,30a污染物(氟化物)扩散达标距离为8m。总体来说污染物在地下水中迁移速度缓慢,项目调节池污染物的渗

漏/泄漏对地下水影响范围很小,高浓度的污染物主要出现在厂区调节池周边小范围的地下水 中, 而不会影响到区域地下水水质。

(2)污染物扩散范围主要与地层结构及其渗透性、水文地质条件、废水下渗量等因素有关。 其中地层结构及其渗透性、水文地质条件为主要因素,从水文地质单元来看,项目所在地水力 梯度小,水流速度慢,污染物不容易随水流迁移。

(3)拟建项目周边无地下水饮用水源,结合有效监测、防治措施的运行,拟建项目对地域的影响基本可控。 **声环境影响预测与评价** . 运营期噪声源强 环境的影响基本可控。

# 6.4. 声环境影响预测与评价

# 6.4.1. 运营期噪声源强

拟建项目主要噪声源包括入驻项目中试设备噪声、基地公 置装置噪声,具体源强详见 4.3~4.5 章节中各个单元的源强

# 6.4.2. 预测模式

- 1、整体声源
- (1)整体声功率级计算模式

整体声源声功率级采用 Stueber 公式计算 其功率级采用如下简化模式计算:

10lg (2Si)

式中: Si—第i个拟建车间的飞

L_{Ri}—第i个整体声源的声级平均值,dB。

本声源声功率级的关键在于求  $L_{Ri}$ ,可由下式估算  $L_{Ri} = L_{Oi}$  -  $\Delta L_{Oi}$ 从上式可以看出, 求得 拟建车间的平均噪声级,dB: 式中: L_{Ri}— 第 **%** 

拟建车间的平均屏蔽衰减,dB。

源辐射的声波在距声源中心为 r 的受声点处的声级采用如下计算: Lni=Lwi-k -第 i 个整体声源在受声点处的声级, dB(A);

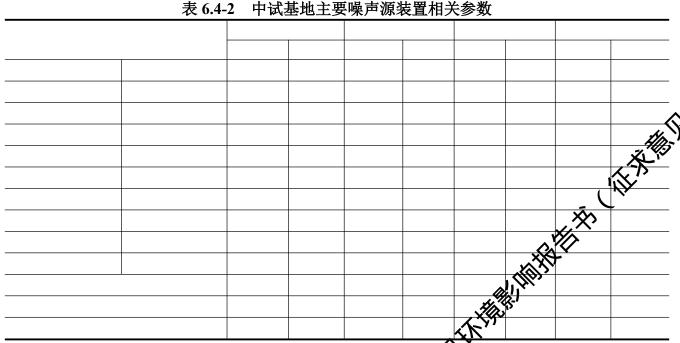
Lwi—第 i 个整体声源的声功率级,用 Stueber 公式计算, dB(A);

k—声波在传播过程中各种因素衰减量之和,dB(A)。

噪声在传播过程中的衰减Σai 包括距离衰减、屏障衰减、空气吸收衰减和地面吸收衰减。 在预测时,为留有较大的余地,以噪声对环境最不利的情况为前提只考虑距离衰减,而其他因 素的衰减,如屏障衰减、空气吸收衰减、地面吸收、温度梯度、雨、雾等均作为预测计算的安 全系数而不计。距离衰减量的计算均按通用的公式进行估算。

Ad=10lg 
$$(2\pi r^2)$$

后的总等效声级 Leq, 计算公式如下:


$$Leq = 10log[\sum_{i=1}^{n} 10^{0.1L^{eqi}}]$$

# 6.4.3. 预测参数与预测结果

	衣 0.4-1 リ	以日土安縣	中仍大量作	大多数	
			12/		
			$\sim$		
		<b>(</b> X			
		V			
	4. \"				
	. 4/2/				
112	<b>}</b> _				
***					

# **降**噪措施衰减 海高噪声i 预测结果

噪声设备采用隔声罩、减振垫等措施,隔声效果按 20dB 计。



# 4、结论

由上表预测结果可以看出,项目实施后厂界昼、夜间或一排放可以满足《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准限的要求。由项目周边环境概况可知,最近的敏感点距离厂界在500米以上,项目噪声经验高衰减后对其基本无影响。

# 6.5. 固体废物环境影响分析

# 6.5.1. 固废产生情况

根据工程分析,本项目危险废实。要有精馏残渣、清釜废渣、废气洗涤渣、废过滤棉、废活性炭、废润滑油、废油桶、实内包装材料、废弃中试产物(含不合格品)、废溶剂、废催化剂、废树脂、废酸、滤渣、烧洗废水、实验废液、失效试剂、废抹布手套、废样品、污水站污泥、废电瓶、废含汞烧等;一般固体废物主要为废外包装材料、纯水制备废树脂、食堂废油脂、生活垃圾等。

# 6.5.2. 一般区域环境影响分析

本项,建成后,废外包装材料、纯水制备废树脂、食堂废油脂等分类收集后综合处置,生活板,由环卫部门定期清运,因此,本项目一般工业固废对环境影响可接受。

# 危险废物环境影响分析

# 1、危险废物贮存场所环境影响分析

(1)危废暂存场所能力分析

厂区内设置危废库,主要收集各类危险废物,危废库占地面积为318m²,最大存储能力约150t,转运周期7~15天,满足危险固废周转的需求。

危险固废仓库按照《危险废物贮存污染控制标准》(GB 18597-2023)、《江苏省固体废物全过程环境监管工作意见》(苏环办〔2024〕16号)、《省生态环境厅关于做好江苏省危险废物全生命周期监控系统上线运行工作的通知》(苏环办〔2020〕401号)规定的贮存控制标准进行设计。

危废库已严格落实防渗措施,地面采取硬化及防渗措施,吨袋堆放区均采用塑料袋叠加坡放方式进行盛放,并混合集中堆放,密封塑桶堆放区均采用 200L 或 1000L 密封塑料桶形式单层堆放,危废仓库内四周设有 25 厘米宽的导流槽,当发生大面积废液泄漏或火灾事故时,废液及消防废水能及时通过危废仓库内导流槽排至危废仓库旁的泵坑中,然后由水泵抽至事故池中进行暂存并按照相关要求进行处置。

危险废物在收集转移时应做好危险废物情况记录,记录上注明危险**成**物的名称、来源、数量、特性和包装容器的类别、入库日期、存放库位、废物出库日期、接收单位名称。

# (2)危废暂存过程环境影响分析

为防止雨水径流进入贮存、处置场内以及危险废物治水板的流失,应构筑堤、坝、挡土墙等设施。为加强监督管理,贮存、处置场应按要求设置水境保护图形标志。

本项目危险废物进行了分类分区暂存,禁止**以**对相容(相互反应)的危险废物在同一容器内混装。无法装入常用容器的危险废物可用**以**放袋等盛装。装载液体、半固体危险废物的容器内须留足够空间,容器顶部与液体表面之间保留 100 毫米以上的空间。

危险废物贮存容器应当使用符**之**放准的容器盛装危险废物,装载危险废物的容器及材质要满足相应的强度要求,装载危险废物的容器必须完好无损。盛装危险废物的容器材质和衬里要与危险废物相容(不相互**以**放)液体危险废物可注入开孔直径不超过 70 毫米并有放气孔的桶中。

危险废物均用密闭容器封装暂存,贮存场所按照《危险废物贮存污染控制标准》 (GB18597, 1666) 有关要求设置,具有防水、防渗措施,通常情况下不会产生废气和废水, 不会对原想环境产生影响。

# 广运输过程环境影响分析

《 危险废物在包装运输过程中若发生散落、泄漏,有可能对周围的大气、土壤、地下水等造成污染,影响周边环境质量。因此在收集前应充分认识危废的类别、主要成分,根据危废的性质选用合适的容器进行包装,所有的包装容器应当经过周密检查,按照《江苏省固体废物全过程环境监管工作意见》(苏环办〔2024〕16号)的要求对危废进行包装,并在明显位置处附

上危险废物标签,确保其安全性。在装载、运输过程中,配合专业人员做好相关工作,一旦发生散落、遗漏,协助危废运输人员做好应急工作。

# (1)厂内运输

本项目危险废物在厂内使用叉车或推车进行运输,运输过程采取防止跑冒滴漏措施,发生散落的概率较低。当发生散落、泄漏时,及时收集散落、泄漏的危险废物,收集方式包括:②固态危险废物通过清扫的方式收集;②桶装液体物料发生泄漏时,应立即将包装桶翻转,减温点处朝上,防止桶内物料进一步泄漏,并采用惰性材料,如砂土、石灰、活性炭等覆盖泄漏物。物料泄漏处置产生的废砂土、废石灰、废活性炭使用无火花工具运至厂内的危险废物处理场所暂存,再送有资质单位无害化处置。

因此,本项目须强化废物产生、收集、贮运各环节的管理,杜绝固炼住厂区内的散失、渗漏。做好固体废物在厂区内的收集和储存相关防护工作,收集后进入安善处置,并建立完善的规章制度,以降低危险固体废物散落对周围环境的影响。

# (2)厂外运输

项目危险废物均委托有资质单位处置,处置前先建立危险废物转移联单,选择专业运输单位,由专业运输单位承担厂外运输,运输过程中或此对途经区域产生影响。危险废物运输中做到以下几点:

- ①危险废物的运输车辆须经主管单位检查,并持有有关单位签发的许可证,负责运输的司机应通过培训,持有证明文件。
  - ②承载危险废物的车辆须有明显的标志或适当的危险符号,以引起注意。
- ③载有危险废物的车辆分公路上行驶时,需持有运输许可证,其上应注明废物来源、性质和运往地点。
- ④组织危险疾物的运输单位,在事先需做出周密的运输计划和行驶路线,其中包括有效的废物泄漏情况的应急措施。

# 3、危险废物环境风险评价

本项目应定期向环境主管部门备案危险废物管理计划(包括减少危险废物产生量和危害性的措施以及危险废物贮存、利用、处置措施),申报危险废物产生种类、产生量、流向、贮存、处置等有关资料。

应针对危险废物的产生、收集、贮存、运输、利用、处置,制定意外事故防范措施和应急预案,向泰州市泰兴生态环境局备案。本项目在运营过程中产生的危险废物,必须按照国家有关规定申报登记,配置符合标准的专门设施和场所妥善保存并设立危险废物标示牌,按有关规定交由持有危险废物经营许可证的单位收集、运输、贮存和处理处置。在处理处置过程中,应采取措施减少危险废物的体积、重量和危险程度。

本次环评要求在危险废物的储存和运输过程中严格执行国家《危险废物贮存污染控制**从**(GB18597-2001)及其修改清单和《危险废物转移联单管理办法》(原国家环境保护总局令第5号)中相关要求,并制定严密的防护措施,避免发生事故污染。

# 4、危险废物委托处置环境影响分析

中试基地承诺危险废物委托有资质单位处理,在项目投产并有危险方物产生且需进行处置时,中试基地与有资质单位签订正式危废处置合同后,按照相关要求方危险废物进行接收、处置。

综上所述,固体废物的处置应遵循分类原则、回收利益原则、减量化原则、无害化原则及分散与集中相结合的原则,将不同类型的固体废物进分为类收集、分类处理,并严格执行本评价提出的危险废物贮存、转移控制及治理措施。如如固废特别是危险固废的日常管理工作。在此基础上,采取相应的措施以后,产生的固定。物对外环境影响可接受。

## 5、 危险废物全生命周期影响分析

根据《省生态环境厅关于做好证书省危险废物全生命周期监控系统上线运行工作的通知》 (苏环办(2020)401号)要求 产废单位首次登录系统时需补充完善产生源、贮存设施、自 建利用处置设施等基础信息 系统自动生成含二维码的各类标识,企业可将标识固定于对应设 施显著位置(标识大规 材质、固定方式等不限),供微信小程序"江苏环保脸谱"二维码扫描 使用;危险废物产生单位和经营单位应根据《省生态环境厅关于印发江苏省危险废物贮存规范 化管理专项数 行动方案的通知》(苏环办〔2019〕149号)等文件要求,在危险废物贮存设 施出入 设施内部、装卸区域、危险废物运输车辆通道等关键位置,按照危险废物贮存设施 视频 资布设要求设置在线视频监控,并与中控室联网。

中试基地投入运行后,将通过全生命周期监控系统自动生成含二维码的各类标识,并将标识固定于危废暂存库门口,并在危废暂存库出入口、设施内部、装卸区域、危险废物运输车辆通道等关键位置布设视频监控,并于中控室联网。同时通过江苏省固体废物管理信息系统实时申报危险废物产生、贮存、转移及利用处置等信息,建立危险废物设施和包装识别信息化标识,形成组织构架清晰、责任主体明确的危险废物信息化管理体系。

# 6.6. 土壤环境影响分析

# 6.6.1. 土壤利用情况

本项目位于江苏省泰兴经济开发区锦江路南侧、院士路西侧,根据土壤信息服务平台本项目所在区域土壤类型为复石灰性,土壤类型分布见下图。



图 6.6-1 建设项目区域土壤类型分布图

# 6.6.2. 评价等级和评价范围

根据 2.3.1.5 土壤环境影响评价工作等级 ,本项目土壤环境影响评价等级属于二级,评价范围为项目所在区域以及区域外 2000 范围内。

# 6.6.3. 评价时段

本项目施工期多为构筑物建筑及设备安装,不涉及化学物质的使用,因此重点预测时段为项目运行期。

### 6.6.4. 情景设置

1、土壤环境影响类型与影响途径识别

土壤污染发化包括大气沉降、地面漫流和垂直入渗等。

(1)大人。降。主要是指区内企业施工及运营过程中,由于无组织或有组织向大气排放污染物,或了一定途径被沉降至地面,对土壤造成影响的过程。根据项目工程分析,本项目废气主要企合非甲烷总烃、甲醇、甲苯、丙酮、乙腈、乙酸乙酯、颗粒物、二噁英类等,因此本次评价考虑大气污染物非甲烷总烃、甲苯、乙酸乙酯、二噁英类沉降污染周边土壤的土壤污染途径。

(2)地面漫流。主要是基于企业所在位置的微地貌,在降雨或洒水抑尘过程中,由于地面漫流而引起污染物在地表打散,对土壤环境产生影响的过程。地面漫流类影响可能发生在大多数产污项目中,当厂区布置散乱、雨水导流措施不完善或老化、地面防渗未铺设或老化破损等,

都会造成该类型影响。厂区微地貌条件决定了地面漫流的水平扩散范围,地面漫流的径流路径 是污染物垂向扩散的起源,垂向污染深度由漫流污染源存在的时间、污染源浓度和漫流区包气 带土壤的防污性能决定,其中微地貌单元中的汇水区是地面漫流类影响需要关注的重点区。建 设项目实施雨污分流,污染物随地表漫流扩散发生的可能性较低,因此不作为预测场景。

(3)垂直入渗。主要是指区内企业各类原料及产污设施,在"跑、冒、滴、漏"过程中或防 设施老化破损情况下,经泄漏点对土壤环境产生影响的过程。项目建设过程中 格防渗,发生泄漏的可能性较低。本次评价考虑区内污水站调节池发生破裂的情况 废水垂直入渗进入土壤中,对土壤环境造成影响,因此选择垂直入渗作为预测场景。 综上,确定本项目土壤影响类型与途径,如下表。

表 6.6-1 土壤环境影响类型与影响途径表

—————— 不同时段	污染影响型				生态影响型			
个内的权	大气沉降	地面漫流	垂直入渗	其他	盐化、碱化	酸化	其他	
建设期					<b>∠</b> ⟨ <b>&gt;</b> '			
运营期	√			~	(1)-			
服务期满后					<b>)</b>			

# 6.6.5. 预测与评价因子

# (1)大气沉降

基于最不利情况考虑, 气污染物中预测因子的沉降效率为 100%。根据 预测正常工况下选取大气污染物中非甲烷总烃、甲苯、 情景,非甲烷总烃、甲苯、乙酸乙酯、二噁英类为预测因子。

### (2)垂直入渗

水污染物源强,选择有土壤质量标准、各类型污染物质最大泄漏 浓度以及泄漏源性分代表性的因子进行预测,因此本项目选择氟化物、石油类作为预测因子。

下境影响源及影响因子识别如表 6.6-2 所示。

表 6.6-2 土壤环境影响源及影响因子识别表

	浸資源	工况 潜在污染途径		主要污染物
	武楼、RTO	正常	大气沉降	非甲烷总烃、甲苯、二噁英类
不管	调节池	非正常	垂直入渗	氟化物、石油类

### 6.6.6. 预测评价标准

本项目所在地土壤环境执行《土壤环境质量 建设用地土壤污染风险管控标准》(GB 36600-2018) 第二类用地筛选值。

# 6.6.7. 预测与评价方法

# 1、大气沉降

(1)方法选取

本项目为土壤污染影响型建设项目,评价工作等级为二级,本次评价选取 HJ964-2018 附 录 E 推荐土壤环境影响预测方法一,该方法适用于某种物质可概化为以面源形式进 是分子。 CULLA 境的影响预测,包括大气沉降、地面漫流等,较为符合本项目可能发生的土壤污 果。具体方法如下:

①单位质量土壤中某种物质的增量可用下式计算:

 $\Delta S = n(IS - LS - RS)/(\rho b \times A \times D)$ 

式中:  $\Delta S$ —单位质量表层土壤中某种物质的增量, g/kg;

表层土壤中游离酸或游离碱浓度增量, mmol/kg;

Is—预测评价范围内单位年份表层土壤中某种物质的 预测评价范围内单位年份表层土壤中游离酸

Ls--预测评价范围内单位年份表层土壤中某种物。

预测评价范围内单位年份表层土壤中经株溶排出的游离酸、游离碱的量, mmol;

Rs--预测评价范围内单位年份表层 某种物质经径流排出的量,g

₹**★**壤中经径流排出的游离酸、游离碱的量,mmol;

- A—预测评价范围, $m^2$
- 段取 0.2 m, 可根据实际情况适当调整:
- 某种物质的预测值可根据其增量叠加现状值进行计算:

 $S = S_b + \Delta S$ 

壤中某种物质的现状值, g/kg;

量土壤中某种物质的预测值, g/kg。

# 表 6.6-3 正常工况下土壤环境影响预测参数选择

					N.

注:①基于最不利情况考虑,本次预测不考虑物质排出量,输入量取废气污染物排放量的 100%。②K 于非甲烷总烃在《土壤环境质量 建设用地土壤污染风险管控标准》(GB 36600-2018)中无相应标准,因 此本次仅计算单位质量表层土壤中某种物质的增量。③甲苯现状未检出,本次以检出限作为背景值是行预 测。

# (3)预测结果

假设本项目污染物持续运行 20 年,在上述预测情景下,本次评价范围发产位质量表层土壤中各污染物的增量及总量如下表所示。

表 6.6-4 正常工况下土壤环境影响预测复

	**	- 1 10 1 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
		N N N N N N N N N N N N N N N N N N N	
		Zy Y	
-			
		×	
		\$2.	
		• 1	
	XYY		
	-4.1		
	usti).		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1 - The state of t		

由以上预见结果可知,正常工况下,假设本项目污染物持续排放 20 年,本次评价范围内单位质量是土壤中非甲烷总烃的增量为 2.816g/kg、甲苯的增量为 0.007g/kg、二噁英类增量为 1.000 g/kg,叠加背景值后评价范围内工业用地单位质量表层土壤中甲苯、二噁英类浓度 2.2 (土壤环境质量 建设用地土壤污染风险管控标准(试行)》(GB 36600-2018)第二类(1.2g/kg、4*10-8g/kg)建设用地筛选值要求。

# 2、垂直入渗

(1)预测方法

根据污染物在包气带的运移特性,本次模拟预测运用 HYDRUS-1D 软件中水流及溶质运移两大模块模拟污染溶质在非饱和带中水分运移和溶质运移。

# ①水流运动基本方程

土壤水流运动方程为一维垂向饱和-非饱和土壤中水分运动方程(Richards 方程),即:

 $\frac{\partial \theta}{\partial t} = \frac{\partial}{\partial x} \left[ K \left( \frac{\partial h}{\partial x} + \cos \alpha \right) \right] - S$  (\pi 1-1)

式中:

 $\theta$ —土壤含水率, %;

h—压力水头, m。饱和带大于零, 非饱和带小于零;

x—垂直方向坐标变量, m;

t—时间变量, d:

k—垂直方向的水力传导度, m/d;

S—作物根系吸水率, d-1。

# ②土壤水分运移模型

土壤水分运移模型可用来描述水分在土壤中的运移过程。HYDRUS 软件水流模型中包括单孔介质模型、双孔隙/双渗透介质模型等一种土壤水分运移模型。本文模拟时采用 Van Genuchten- Malen 提出的土壤水力模型来流行模拟预测,且在模拟中不考虑水流滞后的现象,方程为:

$$\theta h = \begin{cases} \theta_r + \frac{1}{|\mathcal{V}|} & \theta_{r_-} \\ \theta_s & h \ge 0 \end{cases}$$

$$K(h) = K_s S_{\epsilon}^l \left[ 1 - \left( 1 - S_{\epsilon}^{1/m} \right)^n \right]^2$$

$$S_{\epsilon} = \frac{\theta - \theta_r}{\theta_s - \theta_r}$$

(式1-2)

θr —土壤的残余含水率,%;

θs —土壤的饱和含水率, %;

α—冒泡压力, Pa;

n—土壤孔隙大小分配指数, 无量纲;

Se—有效饱和度,%;

Ks—饱和水力传导系数, m/d;

1—土壤介质孔隙连通性能参数,一般取经验值 0.5。

# ③土壤溶质运移模型

·提 · Number Calle And Ca 土壤预测模型使用《环境影响评价技术导则 土壤环境》(HJ964-2018, 试行)附录 E 提 供的方法。

a.一维非饱和溶质垂向运移控制方程:

$$\frac{\partial \theta c}{\partial t} = \frac{\partial}{\partial x} \left( \theta D \frac{\partial c}{\partial x} \right) - \frac{\partial}{\partial x} (qc)$$

式中:

c—污染物介质中的浓度, mg/L;

D—弥散系数, m²/d;

q—渗流速率, m/d;

x—沿 x 轴的距离, m:

t—时间变量, d:

θ—土壤含水率,%。

b.初始条件

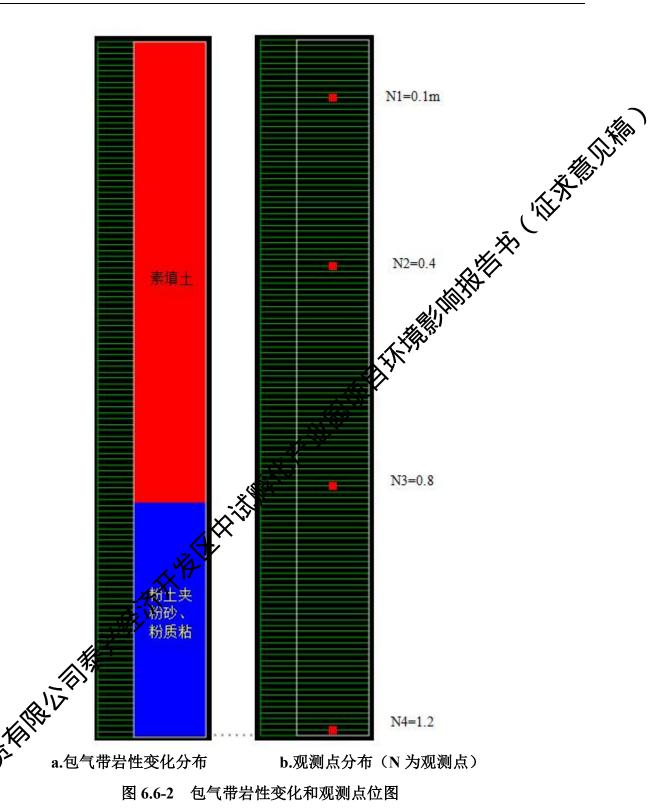
c.边界条件

第一类 Dirlchlet 边界条件

(适用于连续点情景)

(适用于非连续点源情景)

$$-\theta D\frac{\partial c}{\partial z}=0$$
  $t>0$ ,  $z=L$ 


HYDRUS 是一个运行于 Windows 系统下的环境模拟软件,主要用于变量饱和多孔介质 的水流和溶质运移。HYDRUS 包括用于模拟变量饱和多孔介质下的水、热和多溶质运移的二 维和三维有限元计算,包括一个参数优化算法,用于各种土壤的水压和溶质运移参数的逆向估 计。该模型互动的图形界面,可进行数据前处理、结构化和非结构化的有限元网格生成以及结 果的图形展示。Hydrus-1D 是美国盐土实验室开发的, 计算包气带水分、溶质运移规律的软件,

用它可以计算在不同边界条件和初始条件下的数学模型。本次评价采用 Hydrus-1D 软件对垂 直入渗情况下污染在土壤中运移情况进行预测。

# ①模型的建立

污染物运移模型为:污水处理设施底部出现泄漏,对典型污染物在包气带中的运移进行模 拟。

根据建设项目地下水水位现状监测结果,厂区地下水水位埋深约为 1.5m, 项目调节 之0cm。但是为水率,2时间保护发为1年。 分位于地下。因此模型选择自池底向下 1.2m 范围内进行模拟,分为 2 层,①素填土:(0~



边界条件

对于边界条件概化方法,综述如下:

a 水流模型: 考虑降雨,包气带中水随降雨增加,故上边界定为大气边界可积水。下边界为潜水含水层自由水面,选为自由排水边界。

b 溶质运移模型:溶质运移模型上边界选择浓度通量边界,下边界选择零浓度梯度边界。 (3)预测源强

单位面积渗漏量 O 可根据 O=K×I 计算,其中,K 为垂向等效渗透系数;I 为土水势梯度。 场地包气带垂向渗透系数为 K=2×10-4cm/s (17.28cm/d)。土水势梯度 I 由包气带厚度除以水深计

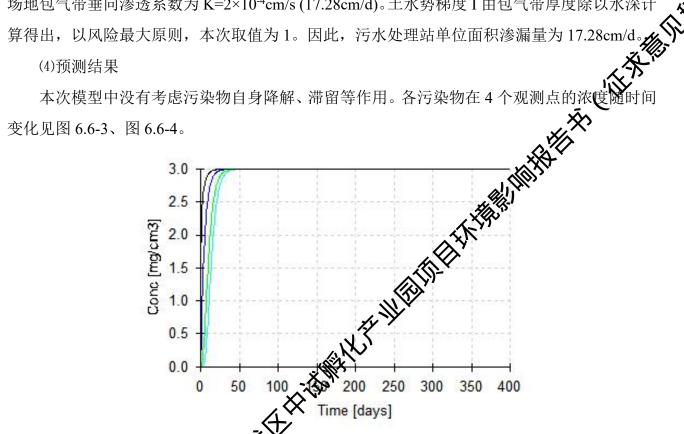



图 6.6-3 壤层不同深度氟化物浓度随时间变化图

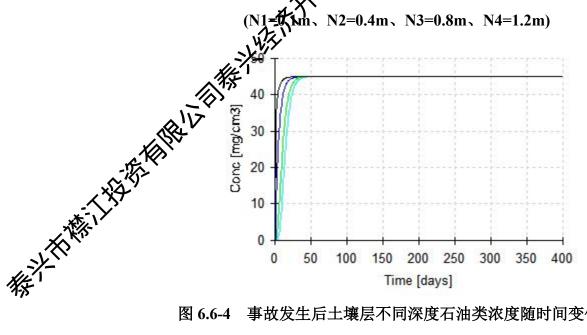



图 6.6-4 事故发生后土壤层不同深度石油类浓度随时间变化图 (N1=0.1m, N2=0.4m, N3=0.8m, N4=1.2m)

氟化物进入包气带之后,距离污染物下渗点以下 0.1m 处 (N1 观测点) 在泄漏后 0.001 天内即可监测到氟化物浓度;下渗点以下 0.4m 处 (N2 观测点) 氟化物可监测时间为 0.184d;下渗点以下 0.8m 处 (N3 观测点) 氟化物可监测时间为 0.674d;下渗点以下 1.2m 处 (N4 观测点) 氟化物可监测时间为 1.12d。

石油类进入包气带之后,距离污染物下渗点以下 0.1m 处(N1 观测点)在泄漏后 0.00 大内即可监测到石油类浓度;下渗点以下 0.4m 处(N2 观测点)石油类可监测时间为 0.10 下渗点以下 0.8m 处(N3 观测点)石油类可监测时间为 0.668d;下渗点以下 1.2m 处 4 观测点)石油类可监测时间为 1.116d。

由上述预测结果图可知,非正常工况下,污水处理设施发生破损,污染产污染因子进入土壤,对其产生影响。因此需严格进行防渗处理,保证废水处理设施运产为区内土壤环境的影响总体可控。

## 6.6.8. 评价结论

- (1)本项目表层填土相对松散,渗透系数较大,填土**。** 不面为粉质粘土,渗透系数很小,污染物渗透主要影响到表面填土层,下面的黏土层和粉质黏土层起到隔水层的作用,能有效地防止大气沉降对底部及周边土壤的影响。
- (2)土壤环境预测结果表明正常工况 发现目运营 20a,评价范围内单位质量表层土壤中非甲烷总烃的增量为 2.816g/kg、甲类 增量为 0.007g/kg、二噁英类增量为 1.58*10-9g/kg。
- (3)非正常工况下,污水处理关泄漏污水将对土壤产生影响,因此须严格进行防渗处理,保证废水处理设施运行对区内发壤环境的影响总体可控。

综上所述,本项目建设对区域土壤环境影响可接受。

## 6.7. 环境风险影响预测与评价

# 6.7.1. 大气环流风险事故预测与评价

根据 设项目环境风险评价技术导则》(HJ169-2018)附录 H,本项目预测的危险物质 大气 建终点浓度值详见表 6.7.1-1。

表 6.7.1-1 危险物质大气毒性终点浓度值

NING-	 
( Kir	

## 6.7.1.1. N,N-二甲基甲酰胺泄漏事故风险预测

1、预测模型筛选

由于 N,N-二甲基甲酰胺烟团理查德森数 Ri=0.7509841,Ri $\geq$ 1/6,为重质气体,扩散计算采用 SLAB 模式。

预测模型主要参数详见表 6.7.1-2。

	表 6.7.1-2	预测模型主要参数表
		××
		<b>*</b>
		1002
		A. A
		11/2
		/y
○ <u></u>		1/1/2

## 2、预测计算

(1)容器泄漏大气事故影响。

表 6.74-3 不同距离处有毒有害物质最大浓度

	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1,3/-		
	AFT.		
	7.45,		
	& V		
	<b>X</b>		
_ <u>&lt;</u> X}			
**************************************			
7 Kan			

-				
				13
				Ž,
				N/A
			1.0	XX.
			ZZE,	
			W Park	
		1	<b>Y Y</b>	
		×		
		×in.		
		X X X X X X X X X X X X X X X X X X X		
	4.	XIT		
	, 4.5.11			
	Mz 1			
	\$\frac{1}{2}\tag{7}^{2}			
	1861/2			
-17	,			
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE LAND OF THE PARTY OF THE PA			
NX.				

215

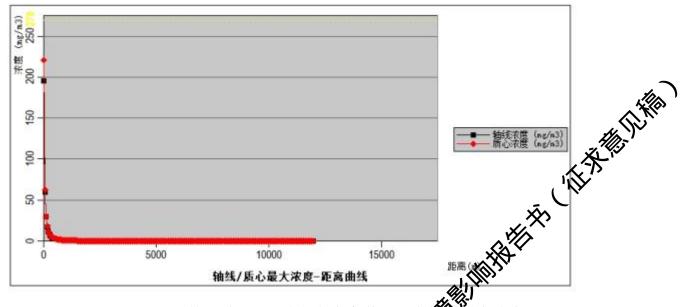



图 6.7.1-1 N,N-二甲基甲酰胺泄漏常规气象条件下风向**袋最大浓度图

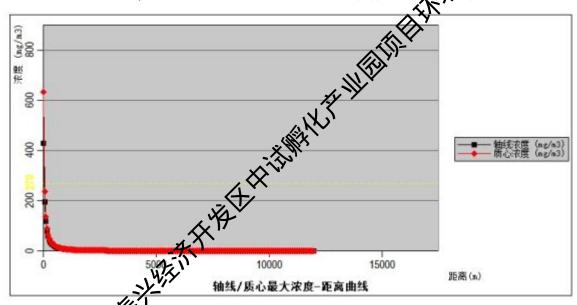



图 6.7.1-400°,N-二甲基甲酰胺泄漏最不利气象条件下风向轴线最大浓度图

②各关 的有毒有害物质浓度随时间变化情况

5 各关心点的有毒有害物则强魔陆时间变化表 单位 表 6.7.1-4 各关心点的有毒有害物质浓度随时间变化表 单位: mg/m³

由预测结果可知,最不利及最常见气象条件下,N,N-二甲基甲酰胺泄漏对周边敏感目标的 影响可控,均未超过相应的毒性终点浓度-1和毒性终点浓度-2。

# 6.7.1.2. 甲苯泄漏事故风险预测

由于甲苯烟团理查德森数 Ri=0.2830571, Ri≥1/6, 为重质气体, 扩散计算采用 SLAB 模式预测模型主要参数详见表 6.7.1-6。 表 6.7.1-6 预测模型主要参数表

	 衣 6.7.1-6 顶侧4	<b>吳</b> 望王安麥	( '
			· X
		Y	<b>X</b> A.
		المالم	<b>»</b>
		##\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
- Control of the cont			
		.\3	

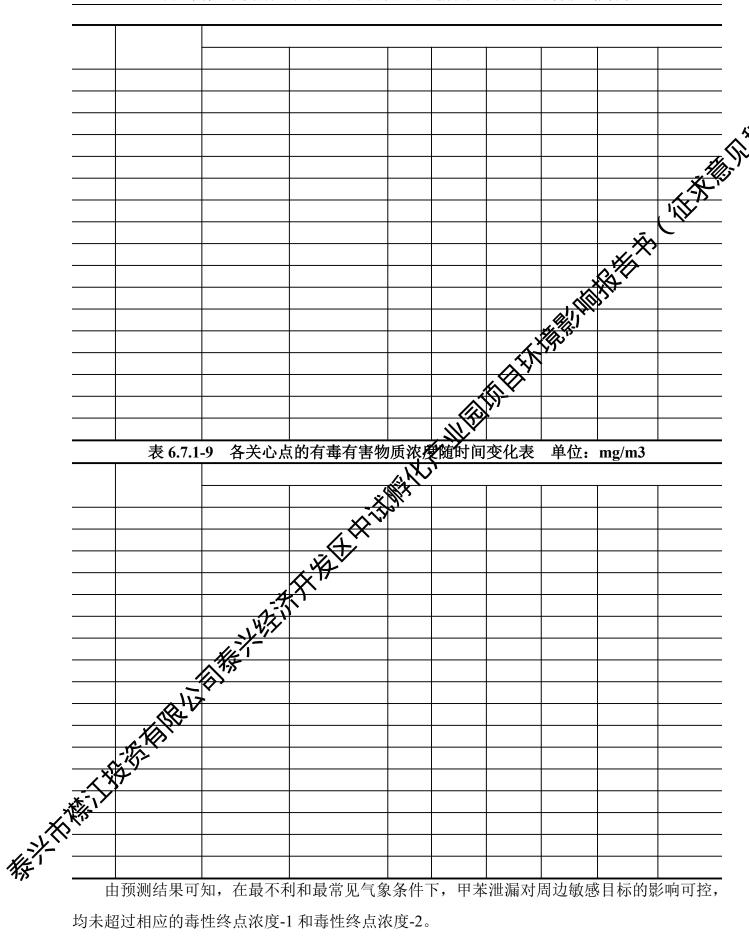

发生地最常见气象条件) 不同距离处有毒有害物质最 大浓度详见表 6.7.1-7。

	表 <b>///</b> ///:1-	7 个问距离处有毒	有害物质最大浓度	
	117			
	St.			
rs K	7			
-12/X)-				
-				
) <u> </u>				

-				
				<b></b>
				Z174
				1
				(1)
				, , , , , , , , , , , , , , , , , , ,
				X^X^>
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
				XXX
				<b>3</b> 2.
			All S	
			N. A.	
			\(\sigma_{\sigma_{j}}\).	
			11/2	
		1		
			•	
		- William		
		<b>├ ⋌</b> ※ `		
		<del>- (1)</del>		
		. **		
	. ^	<b>Χ</b> ''		
	-4	1		
	<u> </u>			
	KK 1			
	45			
	611/2			
	50			
S N				
~***				
~×\ <del>\</del>				
,-, X,4 '	RIV.			

(2)各关心点的有毒有害物质浓度随时间变化情况。

表 6.7.1-8 各关心点的有毒有害物质浓度随时间变化表 单位: mg/m³



由预测结果可知,在最不利和最常见气象条件下,甲苯泄漏对周边敏感目标的影响可控, 均未超过相应的毒性终点浓度-1和毒性终点浓度-2。

## 6.7.1.3. 乙腈泄漏事故风险预测

## 1、预测模型筛选

由于乙腈烟团理查德森数 Ri=0.2146374, $Ri\geq1/6$ ,为重质气体,扩散计算采用 SLAB 模式。 预测模型主要参数详见表 6.7.1-10。

表 6.7.1-10 预测模型主要参数表	1/m
	XL P
	(,,
	) 

## 2、预测计算

(1)泄漏大气事故影响。

不同气象条件下(最不利气象条件、发表,最常见气象条件)不同距离处有毒有害物质最大浓度详见表 6.7.1-11。

表 6.7.1-11 和 向距离处有毒有害物质最大浓度

	1 1 X		
	1=11		
	A TOTAL STATE OF THE PARTY OF T		
	Mr. I		
	<b>Y</b>		
THE TOTAL PROPERTY OF THE PARTY			
~ (A)			
~~~			
_ < × < >			
7 7			
O Kas			
· `			

							(I)
							Ž,
						, in	
(2)夕 光之、占古	的有毒有害物	医 波	时间亦化物	生 /口		A STATE	
	1-12 各关心			龙庄随时	间迹》	V 1	mg/m ³
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 	1-12 行人也	· W H 114	F 日 日 70700 ¥	K/X ME H 1	()-	十四:	mg/m
					Y '		
			SEL N	,			
			*				
		/\	V.		1 1		
		1					
		XX					
	J.	K K					
	3/4/3	A A A					
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
表 6.7	.1-13 各关心	点的有毒			可变化表	单位:	mg/m ³
表 6.7	.1-13 各美心	点的有毒			可变化表	单位:	mg/m ³
表 6.7	.1-13 各关心	点的有毒			可变化表	单位:	mg/m ³

					13
				.5.	
				//X)
			\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	N TO THE REAL PROPERTY OF THE PARTY OF THE P	
			The state of the s		1

由预测结果可知,最不利和最常见气象条件下,乙腈泄漏对是边敏感目标的影响可接受,均未超过相应的毒性终点浓度-1 和毒性终点浓度-2。

6.7.1.4. 乙腈燃烧造成的次生/伴生事故

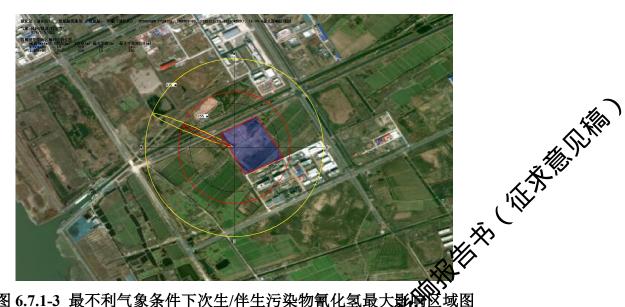
1、预测模型筛选

乙腈燃烧爆炸次生/伴生污染物氰化氢扩散。 算用 AFTOX 模型。

预测模型主要参数详见表 6.7.1-14。

表 6.7.14 预测模型主要参数表

	校 0.7.1-14 1块0	则快 <u>坐工</u> 女 多	
	L'Y	则快至王安多 <u>级</u> 农	
	4.7		
	15:11		
	>\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>		
	1/4 I		
	×1-7-3		
117			
THE IT			
R. KIN'			
			L
ر ۱ ۲۶۲			
×XX			_
Ko.			


2、预测计算

(1)次生事故影响。

不同气象条件下(最不利气象条件、发生地最常见气象条件)不同距离处有毒有害物质最大浓度详见表 6.7.1-15。

The state of the s 表 6.7.1-15 不同距离处有毒有害物质最大浓度

224

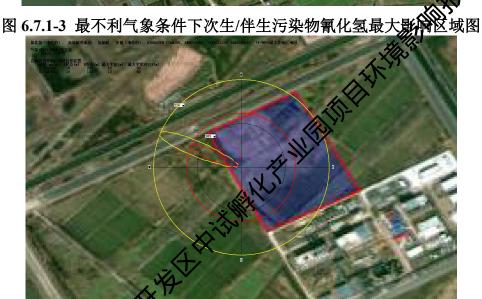


图 6.7.1-14 最常见气象条件下次生/伴生污染物氰化氢最大影响区域图 (2)各关心点的有毒有害物质浓度随时间变化情况

表 6.7.1-16 关心点的有毒有害物质浓度随时间变化表 单位: mg/m³

								Z
								ZI.
					L	L		1-15-15-15-15-15-15-15-15-15-15-15-15-15
表 6.7.1	-17 各关心	点的有毒有害	物质浓	度随时间	间变化表	₹ 单位:	mg/m ³	
							٠	
							X	
						,,	% }'	
							3.	
						4/1		
					_	ZO TO		
					1	(3)		
					\wedge	•		
				11/2				
			 '	X				
			N/X)				
		S						
			<i>`</i> }>,					
		/ X						
		-(1)						
		点的有毒有害						
		X''						
		KI						
	Wis	/J						

根据预测,最不利利最常见气象条件下,次生污染物氰化氢对周边敏感目标的影响可控,均未超过相应的毒素。点浓度-1和毒性终点浓度-2。

6.7.2. 地表水环境风险事故预测与评价

1、消化事故废水排放影响分析

一个地表水风险事故为发生火灾时,若企业未及时关闭雨水排放口阀门,导致消防事故废 通过雨水管网进入周边河道(芦坝港)。

根据建设单位提供,厂内消火栓系统流量为 45L/s,火灾延续供水时间不宜小于 3h,本次按照火灾时间以 3 小时计算,则消防总水量为 486m³,全部通过雨水管网排入芦坝港,消防事故废水中 COD 浓度假设 80000mg/L。

(1)预测模型

根据《环境影响评价技术导则—地面水环境》(HJ 2.3-2018),采用解析法连续稳定排放预测模型。模型基本方程如下:

$$\alpha = \frac{kE_x}{u^2}$$

$$Pe = \frac{uB}{E_x}$$

K 为污染物综合衰减系数,1/d,本次取0.08; Ex 为污染物纵向扩散系数 m^2/s ,速度尔德(Elder)法进行 Ex 的计算,公式如下:

$$Ex = 5.93 H (gHI)^{1/2}$$

经计算, Ex≈3.71m²/s, α≈13.20, Pe≈1.29。

0.027<α≤380 时, 适用对流扩散降解模型(本次α=13.20):

$$C(x) = C_0 \exp\left[\frac{ux}{2E_x}(1+\sqrt{1+4\alpha})\right]$$

$$C(x) = C_0 \exp\left[\frac{ux}{2E_x}(1-\sqrt{1+4\alpha})\right]$$

$$x \ge 0$$

$$C_0 = (C_p Q_p + C_p Q_h) / \left[(Q_p + Q_h) \sqrt{1 + 4\alpha} \right]$$

(2)预测范围及预测因子

- ①预测范围:综合考虑项目所**发**地附近水域水文情势及污染物迁移趋势,若事故废水排入 芦坝港后,应立即关闭芦坝港**大**现有河闸,可将事故废水控制在芦坝港河道内。本次预测范围 事故废水排放点所在的芦**城**港。
 - ②预测因子:
 - (3)水文特征

本项目, 排放口位于芦坝港,河道总长约 2.5km,上口宽约 18m,河底宽 3-5m,本项目取 4m,水深 1~1.5m(本项目取 1.25m),经计算断面面积约为 14m²,水流速度以 0.15m/s 计,则流量为 2.1m³/s。

河段断面参数如下表所示。

表 6.7.2-1 河道水文参数取值

河流名称	上口河宽(m)	河底宽 (m)	水深(m)	流速 (m/s)	流量 (m³/s)
芦坝港					

(4)预测工况

本项目事故消防废水通过雨水管道流入芦坝港,事故消防废水水流量约为 0.05m³/s,水中 COD 浓度为 100000mg/L。

表 6.7.2-2	源强参数取值
	<i>w</i> , , , , , , , , , , , , , , , , , , ,

** **********************************	, , , , , , , , , , , , , , , , , , ,
参数	COD
Cp (mg/L)	2,45
Qp (m³/s)	× 15.
K (1/d)	(1/1)

(5)预测影响结果分析

根据上文建立的解析法连续稳定排放预测模型、设计水文条件以及选取的 项计算参数,计算消防事故废水对芦坝港下游的 COD 浓度贡献情况,预测结果见下表

表 6.7.2-3 距离排放口 Xm 处的污染物浓度。

从上表可以看出,消防事故废水排入芦坝港中,排放口至下游 22m 范围内超出《地表状环境质量标准》(GB3838-2002)IV类水质标准,消防事故废水排放会对芦坝港水质造成功显影响。

2、防控措施

3、事故状态下废水量估算和事故应急池依

基地事故废水收集系统主要设施有: 事效应急池, 收集基地内事故废水; 各中试楼设置废水导流槽、地面冲洗水的收集管道, 经分事故废水收集管道。

根据《关于印发"水体污染防疫紧急措施设计导则"的通知》(中石化建标〔2016〕43号)和《事故状态下水体污染的预防和控制规范》(Q/SY08190-2019),计算事故池总有效容积。

V 总= (V1+ V2-V3) max + V4+V5

注:(V1+**X**3)max 是指对收集系统范围内不同罐组或装置分别计算 V1+ V2 - V3,取其中最大值**X**17

~ 收集系统范围内发生事故的一个罐组或一套装置的物料量;

文学注:储存相同物料的罐组按一个最大储罐计,装置物料量按存留最大物料量的一台反文中间储罐计;本项目未设置罐区,按最大中试企业配套的废水收集罐计,则 V1=6m³;

V2—发生事故的储罐或装置的消防水量, m³;

V2=∑Q 消 t 消

Q 消—发生事故的储罐或装置的同时使用的消防设施给水流量, m3/h;

t 消—消防设施对应的设计消防历时, h;

根据建设单位提供资料,全厂消防给水系统为独立的稳高压给水系统,给水流量均为 45L/s, 火灾持续时间最长以3小时计,发生事故时,全厂事故状态下最大消防水量为486m3。

V3—发生事故时可以转输到其他储存或处理设施的物料量, m^3 : (本项目 $V3=0m^3$ 。)

機械機構 V4—发生事故时仍必须进入该收集系统的生产废水量, m^3 : (本项目 $V4=0m^3$ 。)

V5—发生事故时可能进入该收集系统的降雨量, m³;

V5 = 10qF

q—降雨强度, mm; 按平均日降雨量;

q=qa/n

qa—年平均降雨量, mm; (1030.6mm)

n—年平均降雨日数: (90d)

F—必须进入事故废水收集系统的雨水汇水面积,ha;

根据建设单位提供资料,本项目占地面积约108.1亩,约 顷,故 q=1030.6/90=11.45mm, $V5=10\times11.45\times7.2=824.4$ m³.

因此,V总= (V1+ V2 - V3) max + V4+V5= (64-46-0) +824.4=1316.4m³。

的必急事故池, 根据计算,本项目应设置不小于 1316.4m³ 暂存。

4、事故池的设置

能够收集基地中试装置区发生重大事故进行事故 本项目拟建设 1 座 1500m³ 事故 及此漏物,进行调节处理后,再将收集后的废水限流送入污水处理 应急处理时产生的大量废 ※采用钢筋混凝土结构,并且采取防渗、防腐、防冻、防洪、抗浮 和抗震措施,能有效 从对废水进行收集处理。

处理及外排

设置雨水收集沟,项目雨水排放口必须设置切换装置,如发生火灾、爆炸事 启动切换装置,关闭雨水排放口,并将雨水排放管网内的废水导入事故池内,就本 在发生风险事故时产生的事故废水对周围水环境的影响途径有两条:一是事故废水 有控制在围墙内, 进入附近内河水体, 污染内河水体水质; 二是事故废水虽然控制在围墙内, 但是出现大量超标废水进入基地污水处理站,影响污水处理站的正常运行,导致污水处理站外 排污水超标。基地内实行清污分流,雨水基本不受污染,排入清下水系统。因此发生事故时, 将受污染的消防水(含物料)全部收集至事故应急池内。事故过后,对事故废水进行水质监测 分析,根据化验分析出来的受污染程度,采用限流送入污水处理站或者第三方污水处理设施进

行处理的方法。同时在污水处理装置排放口设监测点,一旦发现排水中有害污染物质浓度超标,则应减少事故污水进入污水处理装置流量,必要时切断,使其不会对污水处理站的正常运行产生不良影响,确保污水处理达标排放。

采取以上防控措施的基础上,本项目地表水环境风险事故对周边地表水环境和敏感目标影响较小,风险可控制。

6.7.3. 地下水环境风险事故预测与评价

地下水风险预测详见 6.3 章节地下水环境影响评价章节。

本项目在厂区设置了环境风险事故水污染三级防控系统:各车间、仓库内部设有地沟和排水系统;基地设有容积 1500m³ 的事故应急池,全厂雨水总排口设置应急截水河。在事故状态下的事故废水和消防废水得到有效收集。此外,厂区危害性大、污染物场大的生产装置区、危废库、污水处理区等为重点防渗区,可有效避免事故废水下渗造成场下水污染。因此,项目地下水风险事故影响可挖。

6.7.4. 预测评价结论

本项目大气环境风险的事故情形为容器破裂导致的危险物质泄漏及火灾爆炸事故产生的次生/伴生污染物在大气中的扩散; 地表水环境风险的事故情形为危险物质发生泄漏随消防废水一同通过雨水管网流入区域地表水体,造成地域地表水的污染事故; 地下水环境风险的事故情形为由于污水处理设施防渗、防漏设施、完善,污染物渗入地下水,造成地下水的污染事故。总体而言,本项目通过采取相关事或的范措施并配套应急处置预案,中试基地环境风险可控。

6.8. 清洁生产分析

1、清洁生产思路

清洁生产是一种**实**的创造性思想,该思想将整体预防的环境战略持续应用于生产过程、产物和服务中,以期提高生态效率并减少对人类和环境的风险。

- (1)对生产程,清洁生产包括节约原材料,淘汰有毒材料,减降所有废弃物的数量和毒性。

** 推行清洁生产的原因:减少风险包括对环境、人类及自身的风险;提高效益包括改善环境 形象、降低末端处理费用、提高利用效率。

清洁生产是污染控制的最佳模式,它与末端治理有着本质的区别:

①清洁生产体现的是"预防为主"的方针,强调的是全过程控制、"源削减"和综合利用。传统的末端治理侧重于治,与生产过程相脱节,先污染后治理。

②清洁生产实现了环境效益和经济效益的统一,强调"替代"和加强管理、技术进步,达到"节能、降耗、减污、增效"的目的。传统的末端治理投入多、治理难度大、运行成本高,只有环境效益,没有经济效益,运行良好的只有 1/3,往往不能从根本上消除污染,而只是介质的转移。

2、拟建项目的清洁生产性

对于本次项目的清洁生产,可以从以下方面进行分析原因:

(1)原材料和能源

本次项目合成采用的原材料都是国内常用的原材料,原料易得,运输贮存方便。同时项目使用多种易燃液体,需加强易燃液体的安全管理。

从能源的消耗来看,本次项目使用的能源(电能、气),满足清洁**,**能源方面的要求。 (2)技术工艺

本次项目建设的中试车间作为泰兴经济开发区产业创新基本,由于受市场变化的影响及开发技术的不断提高,同时对各种工艺水平要进行系列的类型、 因此开发的品种及工艺技术 在开发过程中带有不确定性。

本次拟建设的 8 栋中试楼,其产物工艺处于**文**进水平,符合清洁生产要求。过程分析室主要为中试过程期间的质量分析检测,工艺之前瞻性,设备先进,符合清洁生产要求。

3、项目整体设计理念和空间布局情况

为确保项目整体更好的推进和水流,将优化空间布局,项目将体现如下设计理念:

装备上要求密闭化、自动**收**、模块化,采用先进的设备;资源的综合利用;三废的分类收集,车间预处理,尾气的**减**处理。

(1)密闭化

从物料的转运到反应到出料全部管道化输送,液体为车间储槽或桶储存,固体进料采用密闭投料方式。统微负压操作,散装采用仓泵气流输送;排污系统,分类通过管道收集到密闭设备中,发绝使用水泥池开口方槽等接收容器;滤渣、精馏残液/残渣等均采用密闭容器转运。

第一自动化控制系统一方面可以减少工人的劳动强度,为连续化操作创造条件;二是可增加系统的安全;三是有利于保证产物质量的稳定、有利于管理。设计 DCS 操作系统,对绝大多数工艺参数进行监控,大多数工艺参数实现自动控制,即使部分参数无法实现自控也能够实现远程手动控制。控制系统已经具备开展各类管理工作所需的数据基础,已经为实现全面自动化搭建了基本的硬件框架。工艺操作管理由现场向控制室转移,操作人员劳动强度急速下降,操作

人员数量也出现减少,但对操作员的文化素质要求开始上升;随着自动化的逐步投运,生产操作在不同员工间的差异开始消除,企业的生产效益有了比较平稳的提升和保障;在安全保障方面多一层 DCS 系统的保护,有了人和设备共同管理的冗余保障。同时,企业可以研究进一步开发各类控制策略及管理软件提升工厂管理水平。

综上所述, 拟建项目整体设计理念较为先进。

4、清洁生产建议

- (1)中试基地入驻企业涉及的产物工艺较为复杂,涉及的溶剂种类较多,建议入驻企业在中试线设计时应严格执行园区标准化建设要求,提升工艺技术水平,多采用连续式工艺代替间歇式合成工艺;并尽可能使用重力流等方式进行车间布局,并采用自动控制系统减少人工操作,尽量降低因误操作带来的不必要损耗。
- (2)建议入驻企业考虑溶剂回收,回收方式宜采用多级冷凝,降低冷凝温度,可提高溶剂回收率,减少无组织废气的排放量。
- (3)要求入驻企业在设计上合理布置生产布局,减少物产和送距离,并尽可能采用管道密闭输送,有机物料输送泵建议选用泄漏较小的屏蔽泵或减力泵。溶剂物料除工艺需要外,均建议淘汰高位槽中转过程,直接用计量式隔膜泵打料,减少中转环节。
 - (4)入驻企业应重视对先进设备的投入, 发光能选用密封性能好的生产设备。
- (5)项目涉及多种溶剂的使用,并且**以**、乙酸乙酯等具有一定的环境敏感性,建议入驻企业一方面加强回收过程的控制,提**以**收效率,减少溶剂消耗量;另一方面建议加强工艺研发,选用其他对环境相对友好的溶水进行替代。
- (6)入驻企业使用较多的意思物料,"三废"产生情况较复杂,建议中试基地及入驻企业在今后环保管理中制订较的一个管理制度,并严加管理,确保三废处理设施的稳定运行;在设备上采用先进密闭设备,严防跑冒滴漏。
- (7)建立**从**善生产过程原料、水、电、汽等的消耗指标管理考核办法,定期比较各项指标消耗情况,从而优化生产过程控制,控制原辅材料的消耗量,从源头上减少污染物的发生量。同时,使职工的收入与成本和质量合格率挂钩,从而提高员工操作积极,减少人为因素造成的补损失。
- (8)积极推行清洁生产审核。积极推行清洁生产审核,按照化工企业清洁生产审核指南的要求进行清洁生产审核。定期对生产过程原辅材料消耗、产物质量、"三废"产生量等指标进行对照审核,及时发现生产问题,并予以解决,提高物料利用率,降低消耗。

(9)积极推行各项管理制度。入驻企业积极建立健全各项目环境管理制度,不断完善生产操作规程,设施的运行、操作和化验记录须规范、完整。建议企业建立 ISO14000 环境管理体系,并严格按体系程序进行运作。

6.9. 施工期环境影响评价

本项目施工内容主要为小规模的开挖和回填土石方、地基压实平整、浇混凝土垫层、现象混凝土、预制构件安装、厂区道路建设、给排水管网系统等。

在建设施工过程中,可能对环境造成影响的主要因素包括:施工机械噪声、场地严整和交通运输过程中的扬尘、施工过程中形成的固体废物和施工人员生活污水等。根据项首施工内容特点、污染类型及环境影响程度,确定本期项目建设施工期间主要环境污染。证见表 6.9-1。

	表 6.9-	1 施工期外境污	染特征	
分类	来源	污染物	影响范围	影响特征 及时段
废气	运输、场地平整、基础工程、物料 堆放、汽车尾气、混凝土搅拌站等	颗粒物	施 地及其周围 范围、运输沿线	与施工期同步
废水	生活、施工废水	COD、BOD₅、氨、 氮、SS	施工现场	饲帐 上法 工 粗
固废	生活、建筑垃圾	有机物、天机物	施工场地	间断与施工期 同步
噪声	运输、施工机械、混凝土搅拌站		施工场地及其周围 200m 范围、运输沿线	四少
生态环境	占地、渣土堆放、管道建设 _ <	土方	施工场地	局部与施工期 同步

6.9.1. 施丁期废气环境影响分析

1、车辆废气

施工过程中废气主要来源于施工机械驱动设备(如柴油机等)、运输和施工车辆所排放的废气。此类废气污染物排放量不大,污染源较分散且为流动性,表现为局部和间歇性,加之施工场地开阔,扩散条件良好,施工机械及运输车辆排放的有害气体将迅速扩散,对周围环境影响很小。

粉尘和扬尘

本项目在建设过程中,粉尘污染主要来源于:

- (1)土方挖掘、堆放、清运、回填和场地平整等过程产生的粉尘;
- (2)建筑材料如水泥、石灰、砂子以及土方等在其装车、运输、堆放等过程中,因风力作用而产生的扬尘污染;
 - (3)搅拌车辆及运输车辆往来造成地面扬尘;

(4)施工垃圾堆放及清运过程中产生扬尘。

上述施工过程中产生的废气、粉尘及扬尘将会造成周围大气环境污染,其中又以粉尘的危害较为严重。

施工期间产生的粉尘(扬尘)污染主要取决于施工作业方式、材料的堆放及风力等因素,其中受风力因素的影响最大。随着风速的增大,施工扬尘产生的污染程度和超标范围也将随着增强和扩大。

减轻粉尘、扬尘污染程度和影响范围的主要对策有:

- (1)对施工现场实行合理化管理,使砂石料统一堆放,水泥应在专门库房堆放,水尽量减少搬运环节,搬运时做到轻举轻放,防止包装袋破裂;
- (2)管道开挖时,对作业面和土堆适当喷水,使其保持一定湿度,以为多数尘量,而且开挖的泥土和建筑垃圾要及时运走,以防长期堆放因表面干燥而起尘或发的水冲刷;
- (3)运输车辆应完好,不应装载过满,要采取遮盖、密闭措。减少沿途抛洒,并及时清扫散落在路面上的泥土和建筑材料,冲洗轮胎,定时洒水层。以减少运输过程中的扬尘;
 - (4)应首选使用商品混凝土;
 - (5)施工现场要设围栏或部分围栏,缩小施工减尘扩散范围;
 - (6)当风速过大时,应停止施工作业,并减减存的砂粉等建筑材料采取遮盖措施。

采取上述措施后,施工期废气对周围影响可接受。

6.9.2. 施工期废水环境影响分析

1、施工废水

施工期产生的废水主义源于各种施工机械设备运转的冷却水、洗涤用水、施工现场清洗废水、建材清洗废水、凝凝土养护及设备水压试验等产生的废水。这部分废水含有一定量的油污和泥沙。此部分废水经处理后回用降尘,不排入污水管网。

2、生活

它系的于施工队伍的生活活动造成的,包括食堂用水、洗涤废水和冲厕水。生活污水含有 一定**或**的细菌和病原体,经收集预处理后,接管至污水处理厂。

《** 综上分析,施工期生活污水接管园区污水处理厂,施工废水经处理后回用,不会直接排入外环境,对周围水体环境影响可接受。

6.9.3. 施工期固体废物环境影响分析

施工垃圾主要来自施工所产生的建筑垃圾和生活垃圾。

施工期间将有一定数量的废弃建筑材料如砂石、石灰、混凝土、废砖、土石方等。在工程建设期间,前后必然要有大量的施工人员工作和生活在施工现场,其日常生活将产生一定数量的生活垃圾。

对施工现场要及时进行清理,建筑垃圾要及时清运、并加以利用,防止其因长期堆放而产生扬尘。施工过程中产生的生活垃圾如不及时进行清运处理,则会腐烂变质,滋生蚊虫苍蝇产生恶臭,传染疾病,从而对周围环境和作业人员健康带来不利影响。所以,工程建设期,对生活垃圾要进行专门收集,并定期将之送往较近的垃圾场进行合理处置,严禁乱堆乱把,防止产生二次污染。

6.9.4. 施工期噪声环境影响分析

噪声是施工期主要的污染因子,施工过程中使用的运输车辆及各种工机械,如打桩机、挖掘机、推土机、混凝土搅拌机等都是噪声源。在通常情况下这些设备产生的声压级在85-100dB(A)之间,且施工期间这些源都处于露天状态,按声说是离衰减公式计算,根据有关资料将主要施工机械的噪声状况列于表 6.9-2。

施工设备名称 距设备 10m 处平均 A 声级 工设备名称 距设备 10m 处平均 A 声级 打桩机 105 挖掘机 82 混凝土搅拌机 推土机 76 84 起重机 82 压路机 82 卡车 85 电锯 84 装载机 平土机 84

表 6.9-2 施工机械设备噪声, 位: dB(A)

由上表可知,现场施工机械设备噪声很高,而且实际施工过程中,往往是多种机械同时工作,各种噪声源辐射的根域之加,噪声级将更高,辐射范围亦更大。

施工过程中使用 施工机械所产生的噪声主要属于中低频噪声,因此在预测其影响时可只 考虑其扩散衰减一经预测噪声值随距离衰减的情况,结果下表。

表 6.9-3 噪声值随距离的衰减关系

X//			· p c 01.7 C	/к/ ш	T1767 - 1-41	H 4 - 124 9 7 4 7 1	4244			
距离(mg	1	10	50	100	150	200	250	300	400	600
$\triangle L_{AB}(A)$	0	20	34	40	43	46	48	49	52	57

X计算可得工程施工噪声随距离衰减后的情况如表 6.9-4 所示。

表 6.9-4 施工噪声值随距离的衰减值 单位: dB(A)

施工设备名称	距设备不同距离处的噪声值						
	0m	20m	50m	80m	100m	150m	200m
打桩机	125	99	91	95	85	82	79
推土机	100	69	61	57	55	51	49

	98	67	59	55	53	49	47
压路机	100	69	61	57	55	51	49
混凝土搅拌机	100	70	62	58	56	52	50
卷扬机	85	54	41	42	40	36	34

由上表计算结果可知,白天施工机械超标范围为 100m 以内; 夜间打桩机禁止施工作业对其他施工机械而言,在 200m 范围内均不会超过噪声限值。

为了减轻施工噪声对周围环境的影响,建议采取以下措施:

- (1)加强施工管理,合理安排施工作业时间,严格按照施工噪声管理的有关规定执行 严禁 夜间进行高噪声施工作业;
- (2)尽量采用低噪声的施工工具,如以液压工具代替气压工具,同时尽可减少用施工噪声低的施工方法;
 - (3)在高噪声设备周围设置掩蔽物;
 - (4)混凝土需要连续浇筑作业前,应做好各项准备工作,将然并机运行时间压到最低限度。

除上述施工机械产生的噪声外,施工过程中各种运输关例的运行,还将会引起公路沿线噪声级的增加。因此,应加强对运输车辆的管理,尽量压力工区汽车数量和行车密度,控制汽车鸣笛,设备调试尽量在白天进行。

6.9.5. 施工期生态环境影响分析

- (1)施工期可能带来的生态问题
- ①项目建设改变原有土地类型 原有植物和土壤产生不可恢复的影响,使这些生物失去原有的生境。
- ②项目的建设一定程度 被坏了地表植被、减少了绿地面积、造成土壤生产力下降。但由于施工时间不长对区域生物量影响十分轻微,对区域生态系统稳定性不会造成大的影响。
- ③施工期占地。国内的地表植被遭到破坏,场区绿化工程尚未建成,无法发挥作用,造成一定程度上放上流失,由于项目施工在平原,无引发水土流失的地形条件,且当地暴雨天气少,水土流失比较轻微,施工结束后地表植被可以得到恢复补偿。

分抗治对策

- (文) ①施工临时用地应充分利用现有厂区,严禁将施工材料、工程弃物弃土于绿化带堆放且施工期间要求对粉状物不露天堆放。
- ②在施工期间,应根据实际情况,施工应有计划分段进行,避免开挖地段长期闲置暴露,遭雨水冲刷,造成水土流失。

7. 环境保护措施及其可行性论证

7.1. 废气防治措施及可行性论证

7.1.1. 废气分类收集原则概述

由于入驻项目涉及的废气种类较多,因此,对运营过程中排放的废气,应根据不同排放源,设置不同集气方式,并进行处理。本次按照"应收尽收"的原则要求对废气进行收集处理。

(1)对于过程分析室,其废气组分复杂,污染物浓度低,且远离 RTO 焚烧区域,利用。 橱或集气罩进行收集后,单独净化处理排放;

(2)对于危废库,为确保废气的捕集效率,采用微负压设计,使得废气量大、污染物浓度低,不适宜送 RTO 焚烧系统集中处理,故该股废气单独净化处理排放;

(3)对于污水站,其废水处理环节会有氢气产生,基于安全考虑, 通道直送 RTO 焚烧系统集中处理,污水站采用加盖设置,捕集的废气单独净化处理排放。

(4)对于中试过程产生的废气,结合入驻企业需求,自行业处置或依托基地 RTO 焚烧处置后达标排放。<u>(特殊情况说明:如入驻项目的废气存在</u>)。<u>(特殊情况说明:如入驻项目的废气存在</u>)。<u>(特殊情况说明:如入驻项目的废气存在</u>)。 由入驻企业自行收集处置后楼顶排放)

7.1.2. 废气污染防治措施概述

7.1.2.1. 中试基地废气污染防治处理措施

中试基地自行设置废气处理系统的 (文) 有 5 处,分别为 RTO 焚烧系统、过程分析室、危废库、污水站及食堂,具体如下如 (文)

1、RTO 焚烧系统

为满足入驻企业中试览发处理需求,中试基地设置有 2 套 RTO 焚烧系统,各自设置 1 根废气总管,分别用于扩集中试装置区的含卤素工艺有机废气和不含卤素工艺有机废气。

结合入驻项目类型及污染物种类,对拟送入 RTO 焚烧系统的废气设置 2 道预处理装置,第一道由入政业业负责(非必要不设置),确保产生的废气满足 RTO 焚烧系统的进气浓度限值,第二次由中试基地统一设置,对满足进气浓度要求的废气进一步净化,以减少含杂原子(氯、氮类类的废气量,从而减少焚烧二次污染物的产生(如二噁英、氟化氢、氯化氢等)。

(1)RTO 焚烧系统组成

本次拟设置的 RTO 焚烧系统,含有 2 套废气预处理装置+2 套 RTO 焚烧炉(编号 1#、2#)+1 套尾气再净化装置(急冷+一级水洗+一级碱洗),2 炉共用一根排气筒(FQ-1),单套焚烧炉配套风机风量分别为 1#炉 1.4 万 m3/h、2#炉 0.8 万 m3/h,合计 2.2 万 m3/h。

1#RTO 焚烧炉预处理系统:一级碱洗+一级水洗;主要用于焚烧不含卤素的有机废气。

2#RTO 焚烧炉预处理系统:一级碱洗+一级水洗+二级溶剂吸收/回收;主要用于焚烧含卤素的有机废气。

(2)RTO 焚烧系统设置进气浓度及风压

根据设计,本次将废气来源分为 2 个部分,拟接收的污染物浓度及送风风压要求如下表。如不满足,则需入驻企业自行进行预处理满足要求后方可接入或自行处置排放。

表 7.1.2-1	RTO 焚烧系统进气污染物接入罗	來
-----------	------------------	---

废气 类型	废气特点	来气浓度接收要求	风压要求	主管编号	☆ 系 - 统编号
———— 中试 工艺	风量小,污染物 浓度高;不含卤 素	有机废气 VOCs 浓度低于爆炸下 限的 25%	进入废气主管的压力 不低于 500 Pa	常	1#RTO 系统
废气	风量小,污染物浓度高;含卤素	氯、氮等杂原子含量低于 1000mg/m³;有机废气 VOCs 浓度低于 爆炸下限的 25%	进入废气主管的 办 不低于 50 %	2#主管	2#RTO 系统

2、过程分析室

过程分析室产生的废气主要为酸性废气和有机废气,通风发气罩或通风橱对废气进行收集,并由中试基地统一设置1套"碱液喷淋+气水分离+活性、放附"装置对收集的废气进行净化处置。

3、危废库

危废在库区暂存过程中,会有非甲烷及等有机废气挥发,中试基地将危废库分为 2 个单元,每个单元配置 1 套"喷淋+气水分子活性炭吸附"装置对对收集的废气进行净化处置。

4、污水站

污水在污水站处理过程上,会有非甲烷总烃、氨等废气产生和挥发,中试基地统一设置 1 套"次氯酸钠溶液喷淋+碱洗+水洗"装置对收集的废气进行净化处置。

5、食堂

中试基地统义设置1套"油烟净化器"对收集的油烟废气进行净化处置。

表 7.1.2-2 中试基地统一配置的废气处理措施一览表

	•		\ <u>/</u>	
废气源	废气组分	拟采取的处理措施	Y	责任主体
中试工艺	高浓度工艺有机废气(不含卤素)	一级碱洗+一级水洗+1#RTO 焚烧 急冷+ 火 水	25 m /EO 1	
废气	高浓度工艺有机废气(含卤素)	一级碱洗+一级水洗+二级溶剂吸收/回收+2#RTO 焚烧 洗 级碱洗	25m/FQ-1	
过程	 有机废气、酸性废气等	碱液喷淋+气水分离+活性炭吸附	25m/FQ-2	中试
分析室	有机及 (、	柳	23IIVFQ-2	基地
危废库	有机废气	微负压:喷淋+气水分离+活性炭 皮	15m/FQ-3~FQ-4	至地
污水站	有机废气、氨、硫化氢、臭气浓度等	加盖:次氯酸钠溶液喷淋+碱%+水洗	15m/FQ-5	
食堂	油烟	油烟净化器	专用烟道	

7.1.2.2. 入驻项目废气污染防治处理措施

本次有7家入驻企业,其中试废气部分自行收集处置达标排放、部分依此基地 RTO 焚烧系统处置,具体如下:

表 7.1.2-2 7 家入驻企业废气 杂物污染防治措施汇总

序号	中试项目	所在中试楼	废气主要污染的	预处理措施	末端处理措施
			N TIP		
			∕		
			, Z		
			& [™]		
			<u>-4</u> 1`		
			<u>, </u>		
			% > `		

7.1.2.3. 废气污染防治处理措施说明

图7.1-1 中试基地废气净化措施。

7.1.3. 废气污染防治措施技术可行性分析

7.1.3.1. 有组织废气污染防治措施

7.1.3.1.1.1. 过程分析室废气

根据工程分析,结合过程分析室所需的主要原辅料,其产生的废气主要组分为非甲烷总量及酸性废气(氯化氢、硫酸雾等),且为提高通风橱/集气罩的捕集效率,配套的风量较大导致污染物产生浓度较小。

2、处理措施的选择
为便于入驻企业更加快基的工量工作

为便于入驻企业更加快捷的开展工作,中试基地统一设置实验废气的大大人

(1)收集方式:过程分析室合计24个房间,其中3个为试剂间,剩余分个对入驻企业开放, 每个分析室均配置有1个通风橱+4个万向集气罩(3个试剂间设置收风口),并单独设置引风 机(风量 2000 m^3/h),确保通风橱及集气罩收集效率可达 90% 捕集风速 $\geq 0.3 m/s$)。

(2)净化方式:结合实验废气的类型,本次选用"碱液"、气水分离+活性炭吸附"工艺对实 验废气进行净化处置(总引风机 $4 \, \mathrm{ T m^3/h}$),对有机发气的净化效率约 90%、对酸性废气的 净化效率约95%,净化后的废气通过楼顶排气筒。

表 7.1-3 过程分析。废气措施参数一览表

同时随着活性炭的吸附过程,设备阻力随之缓慢增加,当活性炭饱和时,设备阻力达到最大值,此后的设备净化效率基本失去。为此,系统在设备进出风口处设置一套报警装置,以便及时告知业主需对该设备的活性炭进行更换。活性炭塔安装压差表,通常压力提升至 1000pa时即需要更换活性炭,具体更换条件待设备安装完成后,以调试数据为准。

经对照《实验室废气污染控制技术规范》(DB32/T4455-2023),过程分析室配套的**发**设计参数满足 DB32/T4455-2023 要求,实验废气经净化后可以满足《大气污染物综合的 放标准》(DB32/4041-2021)标准限值。

7.1.3.1.1.2. 危废库废气

1、废气特点

根据工程分析,结合危废库暂存的危废种类,其产生的废气主要分为非甲烷总烃,为提高废气收集效率,本次将危废库划分为2个防火分区,每个分类为设置为微负压环境,每小时换风次数以12次计,核算后所需风量大约1.2万 m³/h, 对流污染物产生浓度较小。

2、处理措施的选择

中试基地统一在危废库的 2 个分区内分别设置,套"活性炭吸附装置",净化后的尾气通过排气筒(FQ-3、FQ-4)高空排放。活性炭吸收工艺为净化有机废气的成熟净化措施,本次不再分析其吸附原理,活性炭吸附装置参数情况见下表:

		及「伊化农且多数」见	<u> </u>
	-4		
人づめ			

·明: 危废库活性炭装置在进出风口处设置一套报警装置, 以便及时告知业主需对该设备

7.1.3.1.1.3. 污水站废气

性炭进行更换。

1、废气特点

根据分析,结合污水站接纳的废水类型及处理工艺,其产生的废气主要组分为非甲烷总烃、 恶臭废气(氨、硫化氢、臭气浓度等)及氢气,为提高废气收集效率,本次将构筑物进行加盖 处置,构造微负压环境,核算后风量大约1万 m³/h(换气次数约6次/h),对应污染物产生浓 度较小。

污水站废气收集及处理装置由中试基地统一建设,由于污水处理段的BDD电催化氧化,有氢气产生,故确保RTO装置运行安全,暂不考虑污水站废气送土土工工签于污水站座气运生工 艺会有氢气产生,故确保 RTO 装置运行安全,暂不考虑污水站废气送去焚烧处置

鉴于污水站废气污染物浓度较低,且含有非甲烷总烃,本次采用 洗"工艺对其进行净化处理。次氯酸钠喷淋可通过其自身的氧化作用降低 体浓度,然后再通过碱洗+水洗进一步除去恶臭气体,净化后的尾 〔筒(FQ-5)高空 排放。

次氯酸钠氧化机理:次氯酸解离生成次氯酸根离子和氢 次氯酸钠与有机物发生氧化还原反应,次氯酸根离子具有 反应生成次氯酸自由基,自由基具有氧化性,从而对

表 7.1-5	
× WX	
, 17	

7.1.3.1.1.4. 中试工艺废气

7.1.3.1.1.4.1.中试废气的特

1、废气特点

根据工程分析(多)合中试基地拟入驻的7个项目类型,中试过程中的废气来源分为工艺废 中工艺废气管道密闭收集,特点为风流小、污染物浓度高,且波动性大,投 罩等方式进行收集,其特点为风量大、污染物浓度低,同时部分工段会伴随有 酸碱废气产生。

废气处置需求

- (1)根据废气组分,本次对其进行分质收集处;
- (2)部分工段投料粉尘产生量较少,直接无组织逸散;部分则收集后与工艺废气综合处理后 排放汇入 RTO 焚烧系统:

(3)工艺废气涉及含氟有机废气、呋喃、氯化氢等,部分自行收集处置、部分预处理或直接 依托 RTO 焚烧系统处置。

图 7.1-2 RTO 焚烧系统废气收集路线示意图

一,不使用含义,原辅料的中试项目,其产生的高浓度 一,不使用含义,原辅料的中试项目,其产生的高浓度 一级碱涂。 级水洗"预处理后,利用 1#RTO 焚烧处置。 简述: 针对工艺有机废气, 在每个中试车间预留 2 个支管接入口(8 栋中试楼-21 个防 一旦使用含卤素的原辅料,该车间的所有高浓度有机废气均通过支管接口(图示中的蓝色方)汇入 2#RTO 焚烧系统的总管,经"一级碱洗+一级水洗+二级溶剂吸收"降低卤素含量后,利用 2#RTO 焚烧处置;不使用含点,原辅料的中试项目,其产生的高浓度有机废 气通过支管接口(图示中的绿色接口)汇入 1#RTO 焚烧系统的总管,经"-

7.1.3.1.1.4.2. 中试废气方案比选

1、投料废气净化方案

(1)废气组分及特征

根据要求,中试基地要求中试企业设置单独的投料间进行原辅料的投加,并配以废气收集净化措施。因此,结合原辅料的形态及种类,投料废气的污染物主要为颗粒物、酸性废气、水平、甲烷总烃或混合废气。为保证足够的捕集效率,投料间配置的风机风量较大,使得大部分水平、废气具有风量大、浓度小的特性。

(2)废气捕集方式及处置措施

投料废气通过投料间密闭收集,收集效率约99%,拟入驻的7个项目,不可目体部分固体粉料通过固体原料投加系统加料,粉尘产生量较少,直接无组织排放;部分处设料的则收集处理后排放或与工艺废气混合送入RTO焚烧系统。

- 1
- 2
- 3
- **(4)**
- (5)
- (6)
- $\overline{(7)}$

2、中试基地集中式废气净化方案比选

(1)中试工艺废气处置措施的选择

入驻企业可根据 需求,对中试废气自行处理后排放或依托中试基地集中式废气处理系

统。

沙废气组分及特征

版 因入驻项目的多元性,使得工艺废气组分较为复杂,主要包括有机废气、酸性废气或伴有颗粒物的有机废气等。该部分工艺废气通过管道直接有反应设备密闭收集输送至净化装置,故具有风量小、浓度高的特点。

(3)废气捕集方式及处置措施

①收集方式

通过管道直接有反应设备密闭收集输送至净化装置,收集效率高,以99%计。

②处置措施

针对中试工艺废气净化工艺进行方案比选,具体如下:

表 7.1-6	中试有机废气处理措施对比表

净化工艺	优点	缺点
活性炭吸附	 运行及投资成本低、占地面积小	处理效率低、安全性差,活性炭中金属离子催化、解有
1日 江 次 7 次 門 1	21次汉英风本版、自地画你有	机氯产生无机氯,对设备腐蚀性较大
RCO	 处理效率高、运行成本低	对催化剂要求高,催化剂易中毒;投资成本高、占地面
KCO	(大)	积大
DTO	处理效率高,投资成本低,运行	占地面积
RTO	成本适中	白吧曲 次
TO	处理效率高、投资成本低、占地	
ТО	面积小	多
СО	投资成本低、占地面积小	对催化剂要求 催化剂易中毒;运行成本高

经对比,本次选用 RTO 焚烧工艺作为基地集中式废气处理系统为入驻企业提供废气处理服务。

7.1.3.1.1.4.3. 焚烧工艺概况

1、工作原理

有机废气的净化的高温氧化法是基本发气中有机化合物可以燃烧氧化的特性,其目的是:通过燃烧氧化将废气中可以氧化的组发转化为无害物质,在废气中含碳氢化合物的情况下,即转化为 CO₂和 H₂O。

RTO(蓄热式高温氧化**注**)系统其主要工作原理是将有机废气加热升温至 760℃以上(根据不同废气成分、工况等温度会有所不同),使废气中的有机成分氧化成 H₂O、CO₂等小分子 无机物;氧化产生的高温烟气通过蓄热体将热量贮存起来用于预热新的有机废气,从而节省能源、降低运行流火。

在启动的段,空气将直接通过蓄热体和高温剂,经过反应器顶部的加热器加热,温度将升高。 第3 动开始时,燃料气为主要的热源。启动后,一旦床层温度达到 750°C,逐渐关闭空气度,同时缓慢的打开反应器入口阀。此时必须密切观察高温反应器出口的温度,以防止高温剂因温度的骤升而受到热冲击。

废气进入RTO的蓄热床,被蓄热陶瓷逐渐加热后进入燃烧室,废气中的VOCs在氧化室内高温氧化并放出热量,形成的热风在通过另一蓄热床时,与蓄热陶瓷进行热交换,蓄积热量,以减少辅助燃料的消耗。蓄热陶瓷被热风加热的同时,被氧化的干净气体温度逐渐降低,使得

出口温度略高于 RTO 入口温度,通常情况下温升约为 40~60℃。通过不同蓄热床层底部气动 阀门的切换,改变废气进入蓄热陶瓷的方向,实现蓄热区与放热区的交替转换。

2、预处理系统

(1)预处理系统数量及类型

根据设计,中试基地设置有 2 套 RTO 焚烧炉(1#炉、2#炉)分别用于处置不含卤素的工艺度气。因此,每个 RTO 炉前分别设置有预处理装置,对应炉体编筑处理装置、2#预处理装置。
1#预处理装置组成: 一级碱洗+一级水洗;
2#预处理装置组成: 一级碱洗+一级水洗+二级溶剂吸收/回收系统。 艺废气、含卤素的工艺废气。因此,每个 RTO 炉前分别设置有预处理装置, 1#预处理装置、2#预处理装置。

(2)预处理系统设计原理

依据《蓄热燃烧法工业有机废气治理工程技术规范》 组分,利用碱洗、水洗及溶剂吸收等组合工艺对其进行预处理》,预处理后的废气送 RTO 焚烧 颗粒物浓度应低于 5mg/m³;易反 炉处置。对于含尘的有机废气, 进入蓄热燃烧装置的废 应、易聚合的有机物不宜采用蓄热燃烧法处理。

因此,本次设置了"碱洗+水洗"工序对焚烧废气进行预处理,由于 2#RTO 炉专门处置含卤 双潜剂吸收/回收系统",主要是对来气中的卤素进 素废气,故在"碱洗+水洗"的基础上增加" 行脱除净化,以减少焚烧过程中; 二噁英类等二次污染物的产生量。

O 炉、1#~2#预处理系统)全部由中试基地统一建设, 如废气初始参数不满足 RTO 窗道接入条件,需要由入驻企业单独设置废气预处理装置(可称 •具体类型以其获批或备案的环评文件为准)。

级溶剂吸收面 收系统"简介

▼过碱洗、水洗去除酸性尾气后,依次进入一级、二级吸收塔,VOCs 被吸收剂 风机送去 2#RTO 焚烧处理设施。

采用两级吸收,吸收剂从二级吸收塔进入,吸收富液溢流至一级吸收塔再循环吸收, 度梯度能够很好的保证吸收效果,一级吸收塔的吸收富液去解吸系统回收 VOCs 系统,吸 收剂再生回用;本工艺两级吸收塔操作温度不高于 35℃,否则会影响吸收工艺整体效果,吸 收效率大于 85%(讲口浓度大于 5000mg/m³, 浓度越高, 吸收效率越大, 出于安全考虑, 废气 进口浓度须低于该组分爆炸下限的25%),其余设备均为常温常压操作。

表 7.1-7				

来自一级吸收塔的富液经预热器预热后进入精馏塔,精馏塔再沸器通过加热,轻组成了精彩、从顶部馏出,经冷凝器冷凝后一部公园还不过流流。 馏塔从顶部馏出,经冷凝器冷凝后一部分回流至精馏釜,另一部分收集至凝液接受罐、主要为 沸点相对较高的有机凝液),达到指定液位后送出再生系统;凝液接受罐后 真空泵排气经冷凝后不凝汽回到前面一级吸收塔,凝液进入接收罐 精馏塔塔釜内重组分(即吸收剂)通过进料预热器给新的富液预热 至二级吸收塔顶部作为补充新鲜吸收剂,另一部分回流至精馏塔 冷却器冷却后送至二级吸收塔补充新鲜液;精馏过程(精馏煤 为负压操作(-0.095 MPa),由真空泵抽负压,真空泵接 经冷却后去 均为常压操作;精馏塔塔釜操作温度为120℃, 去吸收塔的再生后溶剂温度不大于30℃。

本工艺产生的有机凝液作为废液处理, 出口未冷凝的尾气送 RTO 焚烧系统。

燃烧法工业有机废气治理工程技术规范》(HJ1093-2020)要求,对于含有混 的废气, 其控制浓度 P 应低于最易爆组分或混合气体爆炸极限下限最低值的 25%, n(Pe,Pm)×25%, Pe 为最易爆组分爆炸极限下限(%), Pm 为混合气体爆炸极限下限, 机废气爆炸下限(LEL)见下表:

表 7.1-9	常见有机废气 LEL 值	单位:	mg/m ³

				_
				4
				-1. N.5
本项目废气入口主要成分	为甲苯、苯乙烯等,	结合上表, 甲	甲苯与苯乙烯的入	口浓度满声安
装计算要求,废气处于 RTO 处	2理安全范围内。			
				, X >
7.1.3.1.1.4.4.焚烧装置概况			N. Y.	*
1、RTO 设备参数			L. THE REAL PROPERTY OF THE PARTY OF THE PAR	•
			al Illin.	
(1)RTO 炉体结构			4/3	
①炉体结构			XXX	

7.1.3.1.1.4.4. 焚烧装置概况

1、RTO设备参数

①炉体结构

[热、吹扫、蓄热功能,轮流 炉体由三个蓄热室加一个氧化室组成。五个蓄热室分别 进行。壳体由 6mm 碳钢板制造(表面喷砂),外表面设置网加强筋,壳体良好密封,外表面 涂耐热银灰色漆。

热氧化室的作用是将蓄热室出来的 彻底氧化分解,使氧化温度维持在850~ 900℃范围。蓄热室的作用是将烟 量由蓄热材料储存起来,用于预热废气,使废 气进入热氧化室前提前氧化分解, 节约燃料。

固定式三室蓄热燃烧工艺流程示意图 图 7.1-3

②三室 RTO 运行时序

RTO 设备在工作时,经过以下两个过程。

☑冷启动预热状态:

新鲜空气直接进入 RTO 主体进行预热,间隔一定时间后,进出气阀门自动切换,气体在 A、B、C 床之间变更流动方向。此过程操作排空可能滞留在 RTO 设备内部的残留有机废气或 者天然气,以免在点火时发生危险。

的温度逐渐升高,约 3 小时左右后,陶瓷床顶部达到约 850℃,中部达到约 450℃,底部约 100℃。 此时,预热过程结束。 5-10 分钟后,通过 PLC 控制开启燃烧系统,燃烧器系统开始自动点火,蓄热陶瓷填充

☑运行状态

预热过程结束后,RTO 进入运行状态,有机废气经过陶瓷蓄热床 燃温度,在燃烧室内发生氧化反应,生成CO2和H2O,再进入陶瓷 蓄在陶瓷蓄热床 B, 此时 C 床进行吹扫, A 蓄热床温度在沿自 逐渐降低,A、B、C 三 床之间按照周期进行切换,处理后的烟气进入排放烟囱。

燃烧室 1T 2T 3T 讲气 吹扫 排气 A 室 B 室 排气 进气 吹扫 排气 进气 C 室 吹扫

表 7.1-10 RTO 运行i

A 进 B 出 C 吹扫:废气通过蓄热床 热,然后进入燃烧室燃烧,蓄热床 C 中残留未 **讨**比行焚烧处理(吹扫功能),分解后的废气经过蓄热床 处理废气被净化后的气体反吹 B排出,同时蓄热床B被加热

B进C出A吹扫:废气 蓄热床 B 被预热,然后进入燃烧室燃烧,蓄热床 A 中残留未 **反**吹回燃烧室进行焚烧处理,分解后废气经过床 C 排出,同时蓄热 床C被加热。

▼扫: 废气通过蓄热床 C 被预热, 然后进入燃烧室燃烧, 蓄热床 B 中残留未 化后的气体反吹回燃烧室进行焚烧处理分解后废气经床 A 排出,同时蓄热床 A

2)RTO 燃烧室

保证工艺废气停留时间在 1.2s 以上,以便充分的进行氧化反应。燃烧室的温度非常高, 需要高性能的内部保温,保护外壳同时减少散热损失。使用性能可靠的保温材料和耐热及隔热 性能佳的陶瓷纤维模块。

燃烧室的工作温度维持在 850℃以上,最高工作温度小于等于 900℃。燃烧室耐热等级 ≥1100℃,详细参数如下表:

	表 7.1-11 燃烧室技术参数
	4
	Z.X
	Willy,
	Halls.
(2)PTO 类量与	

(3)RTO 蓄热室

蓄热室是系统实现节能的核心部分。蓄热体,也无意热填充物,是 RTO 装置中的一个重要组成部分,它相当于一个换热器,即蓄热式换热器。其作用是: 当冷的废气通过热的蓄热体时,蓄热体将储存的热量释放,使废气加热到流高的预热温度而蓄热体本身被冷却(冷周期): 预热后的气体进入燃烧室,经反应后热的 化气通过冷的蓄热体时,蓄热体吸收净化气体的热量,使气体冷却而蓄热体本身被加热,技术参数详见下表:

	7.1-12 蓄热室技术参数
ME 1	
s (C)	
\$ 15°	

①炉体保温

炉体氧化室及蓄热室内保温采用耐火硅酸铝纤维,耐热 1200℃,容重 220kg/m³,厚 200mm。 内保温共三层,其中含二层陶瓷纤维毡及一层陶瓷纤维模块。陶瓷纤维模块内设置耐热钢骨架, 用锚固件固定在炉体壳体上,外表面涂敷耐高温抹面。考虑燃烧 VOCs 对炉衬的腐蚀性,炉衬 支托架、锚固件等均采用 SUS304 不锈钢材质。材料炉体外表温度环境温度+25 度且不大于 60℃ (热桥除外)。

RTO 炉采用 1260 高纯型陶瓷纤维折叠模块和陶瓷纤维毯对燃烧室和蓄热室进行保温。陶瓷纤维折叠模块的排列方式采用"兵列式"—沿模块压缩尺寸顺向排列。纤维模块列间采用一层厚度 20mm 的陶瓷纤维毯对折后压缩,并用不锈钢"U"型钉保持 500~700mm 的间距穿插到纤维模块上固定以补偿纤维不膨胀面可能产生的收缩,该结构可以避免"拼花地板式"排列方式中,纤维模块因边角部位膨胀不均导致出现"花心"的现象,取得最佳的绝热效果。炉顶部位背衬层安装时采用快速卡片配合模块用螺栓进行临时固定。

②陶瓷蓄热体

陶瓷蓄热体采用 LANTECMLM-180 专利产品。组合蜂窝陶瓷填料,简称 MLM)是一种新型化工填料,从根本上改变化工填料的形体结构,综合性能可比当地陶瓷化工填料的性能提高 1.6 倍以上。MLM 填料是专为有机废气处理设备蓄热式热力。器和蓄热式换热器而设计的规整蜂窝陶瓷填料,由多层齿状陶瓷片组合而成。它独特人结构设计既具有传统蜂窝陶瓷比表面积大,高热容、快传热、压降低,抗污堵的特点,又具有传统的矩鞍环等散装陶瓷填料蓄热性能好、易成型的优点,成为环保行业废气处理大省首选蓄热填料,具有使用寿命长的特点,在设备运行良好的情况下,使用年限达 10.4%人。

(4)RTO 燃烧系统

低氮燃烧设备是低氮燃烧技术**、** 体。低氮燃烧技术主要包括低氮燃烧器、炉膛整体空气分级燃烧技术、烟气再循环技术等,具有投资成本低、运行维护方便等特点。

低氮燃烧器适用于室燃烧,根据燃烧方式可分为扩散式燃烧器(包括燃料分级低氮燃烧器、空气分级低氮燃烧器) 预混式燃烧器。本项目采用扩散式燃烧器,通过物理结构的优化将空气和燃料分层、分分投送入炉膛实现分级燃烧,扩大燃烧区域、降低火焰温度,减少 NOx 生成。

	TO THE STATE OF TH	7.1-13 燃烧机技术参数
x		
	>'	
14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
<u> </u>		

(5)自动监测设备安装及自动监控要求

本项目单套 RTO 炉设计风量分别为 0.8 万 m³/h、1.4 万 m³/h,共用 1 根排气筒(非集束式),合计 2.2 万 m³/h,按照《江苏省污染源自动监控管理办法(试行)》相关规定,本次对 RTO 焚烧系统安装 VOCs 自动监测设备。RTO 自动监测设备安装内容及自动监控要求如下:

①自动监测设备的建设

☑自动监控设备及其配套设施作为环境保护设施的组成部分,与主体工程同时设计、同时 施工、同时投入使用。

☑自动监测监控设备及其配套设施必须符合下列要求:

自动监测监控设备中的相关仪器应当选用经生态环境部认定的 境监测仪器检测机构适用性检测合格的产品;

自动监测监控设备中相关仪器的型号、运行参数等信**发**无在省级污染源自动监控平台中登记,排污单位负责备案信息的真实性、完整性和及时

自动监测监控设备应当安装在符合生态环境保护规范要求的排污口,安装、调试应符合有关技术规范要求。

②自动监控要求

回自动监测数据传输应该符合 212 协议最新版本要求,其中废气污染源流速计、温度计等自动监测仪器至少每 10 分钟之时传输污染源自动监控数据。排污单位安装在监控站房、排放口、治污设施关键位置 2020 短短 2020 全 2020 产 2020 全 20

回的监测仪器采样应该符合 HJ75、HJ1013 规范最新版本要求。

图自动监测监控设备联网要求:

排污单位在接到联网通知后3个月内,按要求安装自动监测监控设备并与生态环境主管部门联网:

自动监测监控设备应当在申请取得排污许可证前与生态环境主管部门联网。

☑自动监测监控设备应当在联网后 3 个月内由企业自行组织完成验收,验收具体项目和要求,按照自动监测相关技术规范以及建设项目竣工环境保护验收管理相关法律法规执行。自动

监测监控设备验收合格后,应当将验收材料在5个工作日内向所在地设区市生态环境主管部门备案。

2、RTO 焚烧装置总体选型

⑴RTO 焚烧装置规格参数

表 7.	1-14 RTO 焚烧装置总体设备参数 //
	**
	202
	, (E)
	14.3
	-XX
-	
	1

(2)RTO 焚烧方案相符性分析

本次拟定的 RTO 焚炉方案与《蓄热燃烧法工业有机废气治理工程技术规范》(HJ 1093-2020)相符性分析,具体

	N/V	表 7.1-15	RTO 焚烧	方案相符性分析一览表	
-15	ίκ,				
× 1/2					
×>, (1)					
<u>-</u>					

		(I)
		-1905
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		1
	.5.	<u> </u>
	×××	
	- ***	

根据上表,拟采用的 RTO 焚烧工艺满足《蓄热燃烧法工业有机废气。建工程技术规范》 (HJ 1093-2020)文件要求。

3、工程实例

《中科院新材料技术(浙江)有限公司中科院杭州湾上海济技术开发区新材料产业创新基地项目环境影响报告书》已于 2021 年获批并投入运动,其入驻项目主要为高分子材料、生物医药材料、精细化学品、电子化学品、能源新材料、先进催化材料、复合材料、金属材料、无机非金属材料等,涉及的废气污染物主要有种烷总烃(二甲苯、甲苯、二甲基甲酰胺、异丙醇、乙酸乙酯、苯乙烯、丙烯腈、乙腈、种醇等)、颗粒物、酸性废气(氯化氢、硫酸雾等)及恶臭气体(苯乙烯、氨、硫化氢等)采取的废气措施为RTO焚烧+喷淋后高空排放。根据其例行监测数据,排气筒出口颗粒物、二氧化硫、氮氧化物、氨等排放浓度均符合排放限值要求。

综上所述,中试产生的工艺废气采用 RTO 焚烧工艺是可行的。

7.1.3.1.1.4.5. 焚烧屋文净化系统(急冷+水洗+碱洗)

(1)急冷塔&

由于**16**0 焚烧系统涉及含氯废气的处理,烟气会有二噁英类产生,经资料调查:二噁英气体。200℃以上分解,烟气在500~200℃时又有少量合成。为防止二噁英的生成,烟气从500℃ 产品到200℃时间控制在1S之内,根据下图可以看出500℃降温到200℃时间为0.4S符合二噁英的再生控制标准。

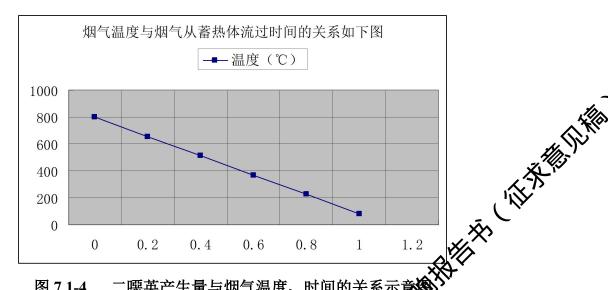


图 7.1-4 二噁英产生量与烟气温度、时间的关系示

故本次通过末端增加急冷塔装置,采用喷雾直接冷却方式 至 200℃以下, 有效抑制二噁英的产生。

(2)碱洗塔

由于焚烧废气中含有的卤素、硫等无机物,这些物质 2.高温焚烧后就会产生酸性废气, 容易导致废气排放口酸性物质严重超标。为确保排放口废气稳定达标排放,RTO 焚烧炉出口 必须配备洗涤塔,用于吸收废气中酸性成分, **次**使排放达标。

后置碱洗塔工艺,利用酸碱中和原理处理废气中 HCl、SO4+等酸性成分,碱洗效率可达 90%,后端配置除雾器,

碱洗塔控制:

- 氢氧化钠溶液,加碱液量根据洗涤塔塔釜 PH 计测量的酸碱 ①洗涤塔所需碱液采用 碱洗塔液位由液位计自行控制。 度来自动控制,pH 值设
 - 由循环泵排液管路自动排出至厂区废液缓冲罐。
 - 的**心**水装置靠液位计实现自动补水、PH 计监控。

要去除碱洗塔出口烟气中带出的液滴,进一步除去残留的酸性废气,从而提高净 前端碱洗塔排水后,通过水洗塔补充液位。

综上所述,在采取上述措施后,RTO 焚烧系统尾气能够实现达标排放。

7.1.3.1.1.4.6.RTO 焚烧系统应急措施

针对中试生产工艺的不确定性,对来气浓度无法满足进气要求时(尤其是历时较短、排放 浓度较高时段的废气),提出如下应急监控措施:

(1)各车间有机废气经预处理后汇总至主管,在距RTO入口100m以上的主管处设置LEL在线检测及报警,高于爆炸下限时启动应急活性炭装置;

(2)RTO 炉前设置的"一级碱洗+一级水洗"、"一级碱洗+一级水洗+二级溶剂吸收-回收"预处理工艺, VOCs 综合去除效率高达 88%以上, 其中二级溶剂吸收回收工艺采用广谱性吸收剂(可同时吸收水溶性和非水溶性 VOCs), 具有 VOCs 组分适用范围广、抗冲击性能强、操作弹性大、有效脱除含杂原子组分等优势,通过该预处理装置初步对废气进行处理,减少非正常扩放的污染物量。

(3)RTO 入口处设置 LEL 在线检测,高于爆炸下限的 15%时启动应急活性炭炭量。

(4)设置二级活性炭吸附应急处置系统,当 RTO 装置出现故障需全部关键修时,收集的废气通过管线切换至活性炭吸附装置进行应急处置。说明: RTO 装置成为二级活性炭净化装置属于应急处置备用,不作为常用废气净化装置。

综上分析,采取上述应急监控措施后,可有效确保废气效。系统的稳定运行。

7.1.3.2. 废气防治措施技术可行性论述

1、过程分析室、危废库、污水站

本次针对危废库废气、污水站废气、过程分析、求取的净化措施均为常见成熟的处理工艺,废气可以确保稳定达标排放。

- 2、中试项目自建废气预处理及处理措施
- 3、中试基地集中式废气处理系统(RTO)

(1)焚烧涉及的污染

划 16 依托 RTO 焚烧处置的 5 家入驻企业废气污染物汇总

序号	中试でし	所在中试 楼	废气主要污染物
1			
2XX	P		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
N 5			

(2)排放方式

工艺废气预处理后合并进入 RTO 炉焚烧,合计风量 $22000 m^3/h$ 设计,杂原子组分含量低于 $100 mg/m^3$,焚烧后的尾气经"急冷+一级水洗+一级碱洗"处理后排放。

(3)污染物达标可行性分析

RTO 焚烧系统净化效率可达 98%以上,5 家入驻企业工艺废气经焚烧后,各污染物排放浓度均满足《合成树脂工业污染物排放标准》(GB31572-2015,含 2024 年修改单)、《大气污染物综合排放标准》(DB32/4041-2021)限值。

(4)特殊污染物达标可行性分析

①二噁英达标可行性分析

根据《三室 RTO 在精细化工废气治理中的应用》(毕道文,夏禾科技(江苏)有限公司,江苏 泰州 225400,文章编号 1008-4800(2022)10-0058-04):温度高于 850℃且燃烧时间大于 1s 时,二噁英就会被完全氧化分解;本项目炉膛设计燃烧温度为 850~900年,燃烧时间为 1.2~1.5s,可以有效控制二噁英在炉膛产生;含卤废气经预处理降低浓度,既能满足 RTO 焚烧系统进气要求,又可从源头减少二噁英的产生,从而使得焚烧足。这标排放。

根据《环境科学与管理》第 42 卷第 9 期中《RTO(蓄热》(化炉)应用调研分析研究》(付守琪、方晓波、朱剑秋,文章编号 1674-6139(2017)(9-0132-05):制药企业 RTO 运行数据显示,当 RTO 进口二氯甲烷浓度为 62.2mg/m³时, 出口二噁英浓度为 0.032TEGng/m³,按此推算 RTO 进口含氯浓度小于 180mg/m³时, 出口二噁英浓度小于 0.1TEG ng/m³。

本项目 RTO 进口含氯浓度小于 100mg/ 控制 RTO 操作温度高于 850℃,二噁英再生是 300~500℃区间,烟气通过此区间范围大场小于 1s, RTO 出口急冷采用喷水直接冷却的方式,从 RTO 出来的混合烟气直接与水接, 传质和传热速度较快, 喷入的液体迅速汽化带走大量热量,烟气温度得以迅速降温4 从而确保二噁英达标排放。

②NOx 达标可行性分析

针对集中处理的**发**有机废气,本次采用三道措施降低其污染物浓度,一是 RTO 炉前的预处理(碱洗、溶剂回收)、二是 RTO 炉自带的低氮燃烧、三是 RTO 炉末端的碱洗。

通过上述**,**施,可有效减少含氮有机废气浓度,从而确保尾气中的氮氧化物达标排放。 综**が**述,结合工程实例,本次拟采取的 RTO 焚烧废气净化措施在技术上是可行的。

7.13.3 恶臭污染物排放控制措施

(1)使用或产生恶臭物质的车间,应采用全封闭方式,空气组织采用全送全排或生产车间处于相对负压状态,排气经过处理后排放。处理方式根据废气性质可采用(酸、碱、氧化液)水洗、过滤、活性炭吸附等。

- (2)企业必须从设备选型、日常管理、采取控制和治理技术入手,选择先进的设备和管阀件,加强设备的日常维护和密封性。有效收集和处理本项目恶臭物质使其在正常工况下对周围环境影响不大。
 - (3)来源于高浓度废水调节池、污泥处置间的恶臭物质必须进行收集和处理。
 - (4)对于含敏感恶臭物质的固废,废物暂存过程中都必须储存于容器中,容器加盖密闭。

7.1.3.4. 无组织废气排放控制措施

本项目无组织废气主要为中试车间或公辅设备逸散废气,通过对同类企业的调查可知, 在不重视预防的情况下,无组织排放的废气对环境的影响比有组织排放的废气对环境的影响 大,因此,本项目应特别注意无组织废气的防治。

基地运营后,废气正常排放情况下近距离厂界周围浓度由无组织**从**旅源强控制,故中试 基地及入驻企业拟采取以下措施,减少中试装置区及公辅工程区域。 光组织挥发量:

- ①加强原辅料存储管理工作,减少储存过程中各类试剂的 发发:
- ②对设备、管道、阀门经常检查、检修,保持装置 发生良好;
- ③应尽量采用连续化、自动化、密闭化生产工艺, 减少物料与外界接触频率;
- ④反应釜采用底部给料或浸入管给料,顶部**大加**液体应采用导管贴壁给料,投料和出料均设密封装置或设置密闭区域;
- ⑤管道、阀门材料根据输送介质的温度和性质确定,所选材料的类型和规格符合相关设计规范和产品技术要求:
 - ⑥中试过程中物料输送尽量应用管道输送;
 - ⑦此外还应加强操作**业が**培训和管理,以减少人为造成的对环境的污染;
- ⑧加强对工程技术,员及操作工的培训,熟悉各类物品的物化性质,熟练掌握操作规程, 考核合格持上岗证,可上岗。

对于有人发气无组织控制措施,本项目应按照《挥发性有机物无组织排放控制标准》 (GB37722-2019)、《江苏省化学工业挥发性有机物无组织排放控制技术指南》进行控制, 基本多求如下:

- ①VOCs 物料应储存于密闭的容器、包装袋、料仓中,存储区域应安装泄漏报警仪以及防雷、防静电等设施。
- ②盛装 VOCs 物料的容器或包装袋应存放于室内,或存放于设置有雨棚、遮阳和防渗设施的专用场地。盛装 VOCs 物料的容器或包装袋在非取用状态时应加盖、封口,保持密闭。
 - ③VOCs 物料包装应密封良好, 避免跑冒滴漏。

- ④VOCs 物料储库、料仓应满足 3.6 条对密闭空间的要求。
- ⑤建立健全装卸过程中的操作制度,运输挥发性有机液体的车辆应按有关规定停放在企业指定的装卸作业区。
- ⑥挥发性有机液体物料优先采用无泄漏泵或高位槽投加,避免真空抽料,进料方式采用底部给料或使用浸入管给料,顶部添加液体宜采用导管贴壁给料。
 - ⑦企业采用单锥干燥、双锥干燥等先进干燥设备,干燥过程中产生的尾气收集处理。
 - ⑧厂区污水处理站的逸散废气加盖密闭收集至废气末端治理设施处理。
- ⑨根据物料特性选用符合要求的优质管道、法兰、垫片、紧固件,通过加装**首**板、丝堵、管帽、双阀等措施减少设备和管线排放口、采样口等泄漏的可能性。
- ⑩加强对无组织排放废气集中收集和处理,严格控制工艺操作过程,透逸性有机气体直接排放,通过实施工艺和设备改进、物料储存和装卸方式改进、废水等处理及固废(液)贮存系统密闭性改造等措施,从源头减少 VOCs 的泄漏排放。
- ①项目对中试工艺中产生的尾气采取了有效的处理**发**说,同时加大贮存区和装置区的管理和维护,最大限度的控制无组织污染物的散发,从而为保本项目的废气污染物排放控制在最低限度。

7.1.3.5. 排气筒设置合理性分析

根据设计,本次中试基地共设置 2.10年气筒(不含食堂),具体设置情况详见下表。

表7.1-18 基地排气筒设置情况一览表

	X 17 -		까기. 너 를		
位置	排气筒编号	高度	内径	烟气流速	设计风量
	Wis.	m	m	m/s	m ³ /h
RTO 焚烧系统装置区	FQ-1	25	0.8	12.16	2.2 万
过程分析室	FQ-2	25	1	15.15	4万
危废库,	FQ-3	15	0.5	16.98	1.2 万
危废	FQ-4	15	0.5	16.98	1.2 万
	FQ-5	15	0.6	10.00	1万
一大小试楼	FQ-6	25	0.6	13.26	1.35 万
#中试楼	FQ-7	25	0.8	11.61	2.1 万

全人根据《大气污染物综合排放标准》(DB32/4041-2021)4.1.4 条,"排放光气、氰化氢和氯化的排气简高度不低于 25m,其他排气简高度不低于 15m";根据《恶臭污染物排放标准》(GB14554-93)6.1.1 条,"排气简的最低高度不得低于 15m",本次不涉及氰化氢和氯气的排放,排气简设置为≥15m 高度符合要求;根据流速核算结果,本项目排气简烟气流速符合《大气污染治理工程技术导则》(HJ2000-2010)中流速宜取 10m/s~20m/s 的要求。

综上所述,本项目设置的排气筒是合理的。

7.1.4. 废气污染防治措施经济可行性分析

根据设计,由基地统一负责建设的环保措施耗资约为2000万元(含设备、运行、维护等 费用),约占总投资的4%,建设单位有能力保证设施的正常运转。

7.1.5. 小结

根据上述分析,本项目拟采取的废气措施能够确保各类废气的稳定达标排放,设备及大营在企业承受范围内,故从环保和经济方面综合者虚 十一二 成本在企业承受范围内,故从环保和经济方面综合考虑,本项目的废气治理方案是可行

7.2. 废水防治措施及可行性论证

7.2.1. 废水产生情况

1、废水来源

中试基地运营过程产生的废水项主要有工艺废水、设备清洗风 洗废水、废气喷淋废水、初期雨水、实验废水、生活污水 公司备系统反冲洗废水、蒸汽冷 凝水、循环塔溢流废水、纯水制备浓水等。

2、废水特点

中试基地废水具有以下特点:

- (1)排水点多,水质差异较大,宜进行分
- (2)高浓度废水间歇排放,盐分和抑制性物质含量差异大,必须做好分类收集和调节。
- 水质波动幅度,成分复杂,该股污水不经预处理,特 (3)污染物浓度高。高 COD 值及 别是生产装置调整造成水质大幅张化时,制约污水处理的稳定运行。

企业需自行处理满足相关标准后回用或直接作为危废收集处置, 不外排。

表 7.2-1 废水分类一览表

废水分为6类,详见下表:

特性 来源 含盐量高(盐分≤35000mg/L) 中试工艺、设备清洗 中试工艺、设备清洗 COD 浓度高(COD ≤5000mg/L) 含氟废水 中试工艺、设备清洗 含有氟化物(氟化物≤30mg/L) 中试工艺、设备清洗 含油废水 石油类较高(石油类≤1000mg/L) 生活污水、分析室、公辅设施、初期雨水、 一般废水 污染物浓度较低(COD<900mg/L) 废气喷淋废水、检修废水 纯水制备浓水、蒸汽冷凝水、循环塔溢流 其他废水 水质较好 废水

264

7.2.2. 废水排水系统

经调查,建设中的现有项目其排水系统已实行清污分流。整个基地设有1个污水排口和1个雨水排口,废水及雨水排放口安装污水流量计、COD 在线监测仪,对接管的废水、水质情况进行监控。

初期雨水收集至厂区初期雨水收集池,送至污水处理站处理,未污染雨水通过初期雨水波前的溢流井切换至厂区雨水管网,经雨水泵站接入园区雨水管网,事故废水一旦产生,通水事故应急池纳入污水处理系统,或委外处置。

根据《江苏省重点行业工业企业雨水排放环境管理办法(试行)》(苏污防攻坚循办(2023)71号)中要求:项目厂区建设独立的雨水收集系统,实施雨污分流、清污水流,严禁将生活污水及生产废水接入雨水系统,企业应加强管理,杜绝出现溢流、渗漏水、雨水收集管网的现象。初期雨水收集管网宜采用明沟或暗涵(盖板镂空)收集输送,水泥据污染状况做好防渗、防腐措施。工业企业雨水收集管道及附属设施内原则上不得敷设存在环境风险的管线。初期雨水收集进入应急池后能迅速通过提升泵转至污水处理系统。此时应设置手动阀作为备用,确保在突发暴雨同时发生事故等极端情况下,即使断电也能采放手动方式实现应急池阀门和雨排阀的有效切换。

初期雨水收集池前设置分流井、收集池内设置流量计或液位计,可将收集池的液位标高与切换阀门开启连锁,通过设定的液位控制阀水井启或关闭,实现初期污染雨水与后期洁净雨水自然分流。初期雨水应及时送至厂区河水处理站处理,原则上 5 日内须全部处理到位;雨水排口安装雨水截断装置,无降雨时,水锅雨水收集池应尽量保持清空。严禁将后期雨水排入污水收集处理设施。厂区雨水排口水置在线监控及视频监控设备,并与生态环境部门联网。雨水排放口前应安装自动紧急切断装置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现时水升高,或超过受纳水体水功能区目标等管控要求时,应立即启动突发环境事件应急预案。如即停止排水并排查超标原因。中试基地定期开展雨水收集系统日常检查与维护,及时流程淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、水、乱接等现象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水流渠。基地雨水管布设情况详见图 7.2-1。

2.3. 废水处理方案

1、污水站规模

根据核算,拟建项目进入污水站的废水量约为 42720.56t/a(约 143t/d),故本次拟建污水站设计规模为 300t/d,满足基地污水处理需求。

考虑到基地运营初期,入驻项目较少、废水产生量小,故拟建污水站分为3个模块进行建 设,单个模块处理规模为100m³/d。

2、污水站废水分质收集原则

2、13小组成小刀/	M IX TAN MI		
为确保基地污水站	的正常运行,要求分质收	集的废水在满足相关限	值的前提下,方可接入,
1污染物浓度过高,需	由入驻企业自行预处理过	达标后接入,具体限值 如	u下: 划
根据设计,本次拟	以对来水分为5类,分别为	内一般废水、高盐废水、	含油废水、含氟废水、
5浓废水,依据污水站	i净化工艺,各股废水接收	女限值如下:	Chi
	表 7.2-2 一般	废水接收限值	××,
污染物	接收限值(mg/L)	污染物	接收值 (mg/L)
pH 值(无量纲)	5~10	COD	√ ≤900
氨氮	≤30	总氮	≤50
总磷	≤7	SS 🚜	≤ 300
动植物油	≤25	石油类 人名	≤25
挥发酚	≤3	苯胺类	≤8
氰化物	≤0.5	LASI	≤25
全盐量	≤5000		≤10
	表 7.2-3 高盐	废水接收限值	
污染物	接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤900
氨氮	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25 / ♦	石油类	≤25
挥发酚	<u> </u>	苯胺类	≤8
氰化物	AND T	LAS	≤25
全盐量	35000	氟化物	≤10
	表 7.2-4 含油	废水接收限值	
污染物	头 接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤900
氨氮 💉	S ≤30	总氮	≤50
	≤7	SS	≤300
总磷 动植物	≤1000	石油类	≤1000
挥发	≤3	苯胺类	≤8
- 上物	≤0.5	LAS	≤25
XX主盐量	≤5000	氟化物	≤10
- ->	表 7.2-5 含氟	废水接收限值	
污染物	接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	7~10	COD	≤900
	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	 石油类	≤25
挥发酚	≤3	苯胺类	≤8
氰化物	≤0.5	LAS	≤25
	, I		The state of the s

全盐量	≤5000	氟化物	≤30
	表 7.2-6 高浓	医水接收限值	
污染物	接收限值(mg/L)	污染物	接收限值(mg/L)
pH 值(无量纲)	4~10	COD	≤5000
 氨氮	≤30	总氮	≤50
总磷	≤7	SS	≤300
动植物油	≤25	石油类	≤25 %
挥发酚	≤30	苯胺类	≤30 2,105
氰化物	≤3	LAS	≤25
全盐量	≤5000	氟化物	≤10, 1 ×

3、污水站废水收集暂存

(1)废水的暂存

①中试装置区:结合平面布置图,每个中试项目配套 1 个 6m³的低浓水水储罐(池套罐,由中试基地统一配置);由入驻企业自行配置 1 个 6m³的高浓度废水水罐(池套罐,由中试基地负责预留空间)。

②污水处理站区域:分别针对高盐废水、高浓度有机(水)、含氟废水、含油废水设置 1个废水罐/桶,合计 2个*23m³、2个*21m³;建设 1座、水发水收集池,池容 121m³。

说明:污水站区域已为入驻企业自建废水预处建措施提供预留用地。

③厂前管理区。结合平面布置图,厂前管**设**配置有生活污水管网、化粪池、生活污水池及污水提升泵。

(2)废水的收集及输送

根据设计,基地内铺设工、废水输送总管,分别为生活污水总管、一般废水总管、特殊废水总管。

中试项目根据《为废水水质,初步对其进行分类后,排入对应的废水收集罐,基地工作人员在接收该废水水,需对罐内水质及水量进行监测核定(目的:判定废水类型及处理量),根据监测结果。将同类型废水通过管道输送至污水站特殊废水储罐,并将低浓度污水输送至污水站的《股废水收集池。


一般废水总管主要用于低浓度污水的输送,基地工作人员在接收该废水前,需对低浓度 废水储罐内水质及水量进行监测核定,检测符合纳管标准后,DCS 控制泵送至污水处理站一 般废水收集池。

②特殊废水总管主要用于高盐废水、高浓度有机废水、含氟废水及含油废水等废水的输送,上述不同类型的中试项目产生的高浓工艺废水,基地工作人员在接收该废水前,需对罐内水质

及水量进行监测核定(目的:判定废水类型及处理量),检测符合纳管标准后,DCS控制泵 送至污水处理站同类废水罐。

说明:由于总管在管廊上保持向污水处理站有斜度,且不同类型的高浓工艺废水在分时段 输送和切换时至少有 15min 的间歇,最大限度保证切换下一个类型高浓工艺废水前,前一个总 管内高浓工艺废水能自流清空,从而将污水处理站高浓废水罐在切换时候的相互混淆影响减少。 至最低。同时,部分在污水站旁边设置预处理装置的中试项目,其废水直接泵至污水站的 系统。 中试基地污水收集系统布设情况见图 7.2-2。 4、污水站处理工艺

268

①预处**元(隔油+混凝气浮+调质+混凝沉淀+气浮)

高基度水:本项目对高盐废水不做除盐处理,高盐废水仅单独收集,均衡配送至整个系统中人高盐废水单独收集的目的有二:第一,调峰,防止瞬时高盐废水进入导致出水超标,第二,不超标排放的前提下,减少因偶尔的盐分超标而设置除盐系统导致的不必要的投资和运行费用浪费。

高浓废水:本项目对高浓废水不做降解处理,高浓废水仅单独收集,均衡配送至整个系统中,高浓废水单独收集的目的有二:第一,调峰,防止瞬时高浓废水进入导致出水超标,第二,

在不超标排放的前提下,减少因偶尔的 COD 超标而设置 COD 系统导致的不必要的投资和运行费用浪费。

含氟废水:本项目主要针对无机含氟废水(有机氟不在处理范围内),无机含氟废水首先通过单独设置的含氟废水储罐收集与均值,之后通过混凝气浮投加氯化钙,将氟化物转为氟化钙,通过气浮去除绝大部分氟,之后与一般废水混合,经混凝沉淀和混凝气浮进一步处理而达到接管标准。

含油废水:含油废水单独收集,先通过破乳隔油处理去除大部分油污,之后废水进入混凝气浮(与含氟废水的气浮设备共用,不同时处理)进一步强化除油。

高盐废水、高浓有机废水经收集罐分类单独收集后,通过输送泵与一般水均衡配水进入综合调节池,含油废水通过含油废水储罐单独收集,经隔油一体化设备水冷隔油后进入混凝气浮池,通过混凝气浮装置去除水中悬浮的油类及 SS 后进入综合调大。

含氟废水通过混凝气浮加药进行一级除氟后再进入综合调水池混合配水。含氟废水与含油废水可根据来水情况分批进行处置,两种废水不可同时处置,所有废水通过一定配比进入综合调节池调节水质水量。综合调节池出水经混凝沉淀去除 SS 后废水进入中间水池缓存,通过水泵均衡进入混凝气浮池进一步去除 SS 及悬浮颗粒、出水自流进入深度处理单元(BDD 电催化氧化单元)。

②深度处理单元(BDD 电催化氧化

废水自流进入BDD 电催化氧化单元后,经BDD 电催化氧化强化 COD 污染物的降解,出水合格直接排入清水池。部分水水回流进入混凝气浮池进一步循环反应降解,保证接管出水水质。

BDD 电催化氧化类电解氧化工艺就是利用电极材料的高氧化还原电位,在电流的作用下,使水中的污染物得到氧化分解,以气体的形式逸出。

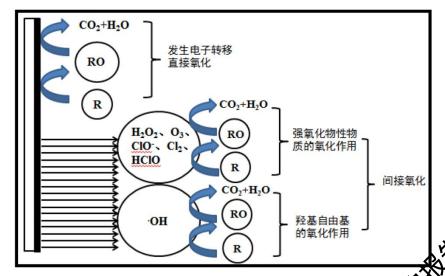


图 7.2-3 BDD 电催化氧化装置原理示意图

③污泥处置单元

所有物化污泥排入污泥浓缩池,污泥经叠螺机机械脱水后,并有处理资质的单位处理, 压滤液回流至综合调节池。

(5)污水站构筑物参数

①特殊废水收集罐

处理水量: 所有特殊废水总量不超过 30mm

功能说明:存储车间产生的高盐废水、高浓有机废水、含氟废水、含油废水等各种特殊废水。

特殊废水收集罐根据来水种类进行分类收集,分为高盐废水收集罐、含油废水收集罐、含氟废水收集罐、高浓废水收集罐。

结构形式: PE 桶/F 桶

高盐废水收集**统**尺寸: ∅2.8*3.7m, PE 桶

高浓废水效集罐体尺寸: Ø2.6*4.0m, FRP 桶

含油**水**收集罐体尺寸: ∅2.6*4.0m,FRP 桶

及备配置: 提升泵、电磁流量计、侧装磁翻板液位计等。

②除油一体化设备

处理水量: Q=30m³/d

功能说明:对含油废水进行初步隔油处理;

结构形式:钢制一体化设备

设备配置: 提升泵、浮油桶、酸加药泵

③预混凝气浮

处理水量: O=30m³/d

理按批次分开进行。

双批次分开进行。
设计参数: 加压溶气气浮, 2.5m³/h, 30%回流, 气浮表面负荷小于等于 2.5m³/m²·h, 30%回流, 气浮表面负荷小于等于 2.5m³/m²·h, 30%回流, 气浮表面负荷小于等于 2.5m³/m²·h, 30%回流, 气浮表面负荷小于等于 2.5m³/m²·h, 4.4 上部 2.5 上, 4.4 区底部设集泥槽,顶部配置集气罩。

设备配置:曝气搅拌系统、提升泵、电磁流量计、超声波液位计。

⑤综合废水调节池

处理水量: O=300m³/d

功能说明:存储

结构形式: 半地光的砼结构

₩10.5*8.0*5.5m

效水深: 5.0m

全配置: 曝气搅拌系统、提升泵、电磁流量计、超声波液位计。

⑥混凝沉淀单元

设备处理水量: O=3*100 m³/d。

功能说明:通过混凝去除生产废水中的 SS:

设计参数: 混凝总反应池时间 T=1h

结构形式:钢制一体化设备

272

沉淀池停留时间: T=3h, q=0.8m³/m²·h;

设备配置:液碱加药泵、PAC 加药泵、PAM 加药泵、稳流筒、出水堰、刮泥机、排泥泵 築。

底部设集泥槽。

设备配置: 气浮一体化装置、 排泥泵、侧装磁翻板液位计。

⑨BDD 电催化氧化单元

功能说明:对水中污染物进行强化氧化降解,保证出水水质。

统、电解槽、控制系统、管路系统、冷却系统、储水循环系统、尾气

系统,包括阀门和附件都是必须是耐腐蚀的。设计中采用 PP 热熔管。各反应单 接要考虑检修方便。

9-2 冷却系统

由于电解时会放热,温度过高,对系统的稳定性会造成威胁,所以,必须设计冷却系统。 冷却系统采用板式换热器对系统进行冷却降温。

⑨-3 储水循环系统

273

循环系统是为了保证反应槽内有足够流速,使电极和废水接触时间足够短,破坏电极产生 的气体在电极表面形成的气膜,该气膜会阻止废水和电极的接触,进而影响电解反应的继续进 行。所以,足够的搅拌强度是反应效果的有力保证。所以,必须配备足够流量的防腐蚀水泵。

及在线仪表

《水及在线仪表

《水及在线仪表

《水及在线仪表

《水尺寸: 8.0*4.0*5.5m
设计有效容积: 160m³
设备配置: 配置穿孔曝气管及排水转移。

《沙路配置: 配置穿孔曝气管及排水转移。

《沙路说明: 配套各工艺单元加速

《金配置: 液碱加药系统、混化等

见药系统、配套加速。

《礼房 (阳)加药系统、配套

套曝气搅拌风机。

说明:系统产生的污泥通过重力浓缩机机械压滤和干化达到减量的目的;

处理污泥能力: 按 300m³/d 处理能力设计

物化污泥: 14.6t/d (污泥含水率按 98%估算),

设计参数:污泥浓缩池停留时间: 24h,

叠螺机每天压泥1批次。

滤液池1座(设置在污泥房)。

,水源、PAM加约装置、进料泵、叠螺机。
一中。

"处理规模为 300㎡,本次拟进入污水处理站的污水产生更多的。可以满足木项目废水的处理需求。
... 达标可行性分析
... "设订进水水量及浓度
... 新设计,结合本地运营期污水结来水水质,污水结设置进水水和

275

表 7.2-7 污水站设计进水水量、水质

					1	1 • 2 - 1	17/1/21	K II KLANA	至)小次			1			
分类	水量	pH 值	COD	氨氮	总氮	总磷	SS	动植物油	石油类	挥发 酚	苯胺 类 *	氰化物	LAS	全盐量	氟化物
	m³/d	无量纲	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg	mg/L	mg/L	mg/L	mg/L
一般废水	270									,	×χΦ,				
高盐废水	4 种特殊									215	100				
含油废水	废水总水									ZAR.					
含氟废水	量不超过								<i>\(\)</i>	XX					
高浓废水	30m ³ /d														
综合废水	300								~(1)-V						
															

说明:污水站单个模块废水总水量不超过100m³/d,相应的特殊废水总量不知过10m³/d。

(2)污水站设计出水水质

根据设计,结合基地污水站各构筑物净化效率,污水站出水水质如

表 7.2-8 污水站设计 水水质指标 单位: mg/L

		- 1	17/12/1	MAN 11 / 1 / W 1 H W	r — pr. mg/L		
序号	项目	出水水质	接管标准	序号	项目	出水水质	接管标准
1	COD						
2	SS		XY				
3	NH ₃ -N		-4.1				
4	TN		u/z"				
5	总磷	,.	\ <u>\</u>				
6	动植物油		-				

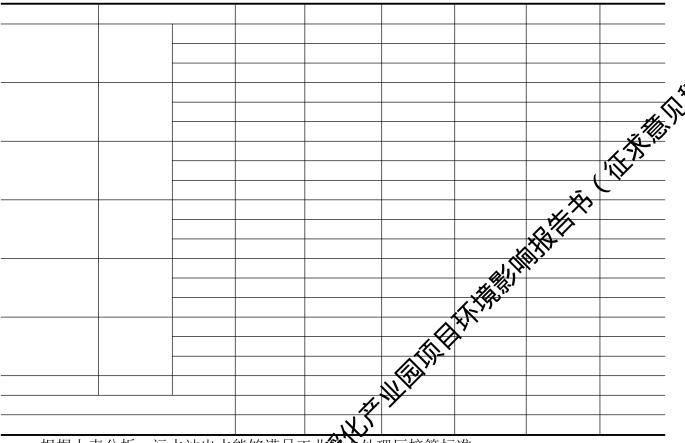


表 7.2-9 污水站主要污染物净化效果一览表

根据上表分析,污水站出水能够满足工业水处理厂接管标准。

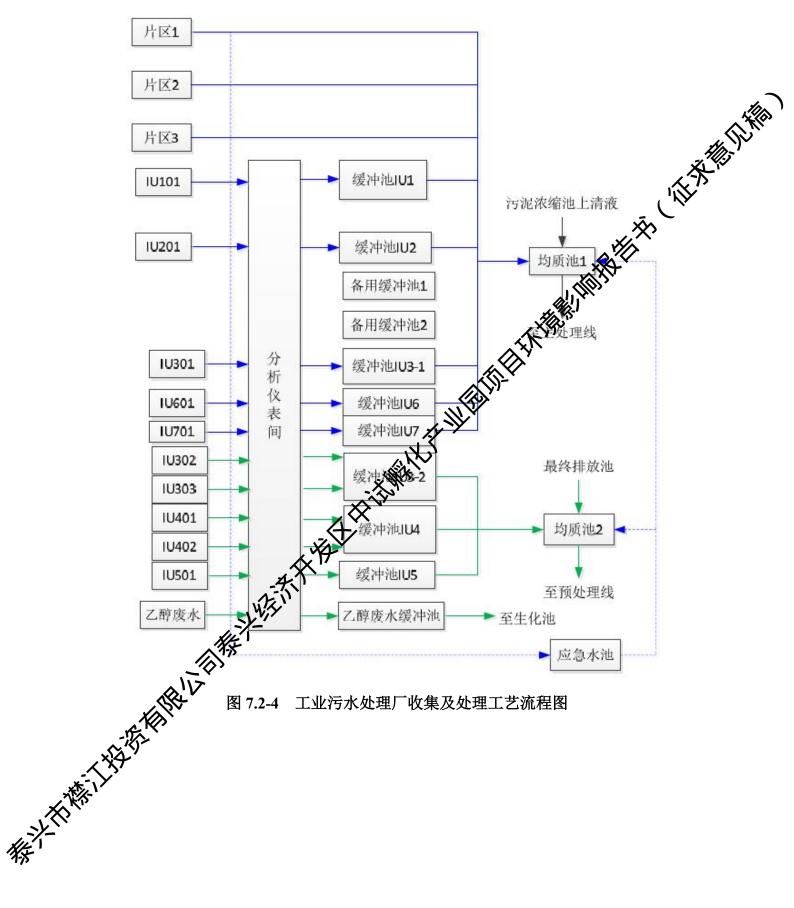
说明:①本次入驻的7个中试项目不是发第一类废水污染物,如后续企业涉及,应在生产车间或设施废水排放口处理达相应的一业或其他适用的排放标准后回用或直接作为危险废物收集处置,严禁外排;②对于本文术涉及,但后期可能产生的且工业污水厂能够接收的特征污染物,经污水处理系统经调度地均值后不超过污水厂纳管标准,则可排入本系统,否则入驻企业须进行必要的预处理或开展相关论证,说明本项目污水处理系统具备相关指标的处理能力,必要时由中试基地分系统进行升级。

3、工程实例

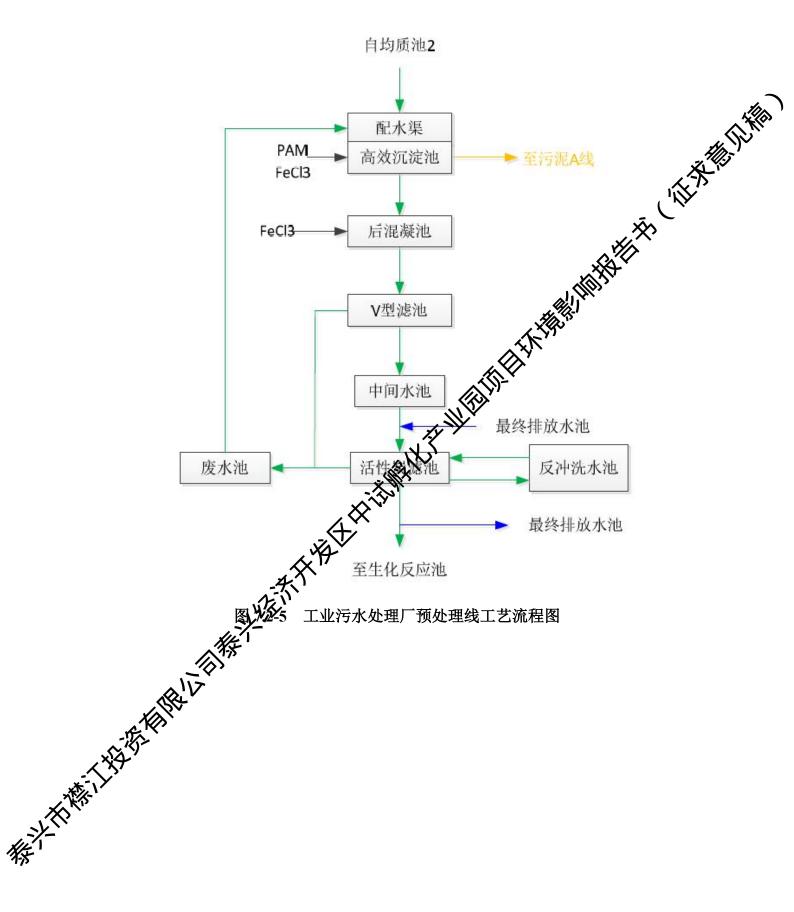
拟建筑站预处理段均为技术成熟物理处理工艺,故本次针对 BDD 电催化氧化工艺单元, 收集之了国内部分工程实例,具体如下:

 表 7.2-10 BDD 电催化氧化工艺	工程实例一览表
	× ×

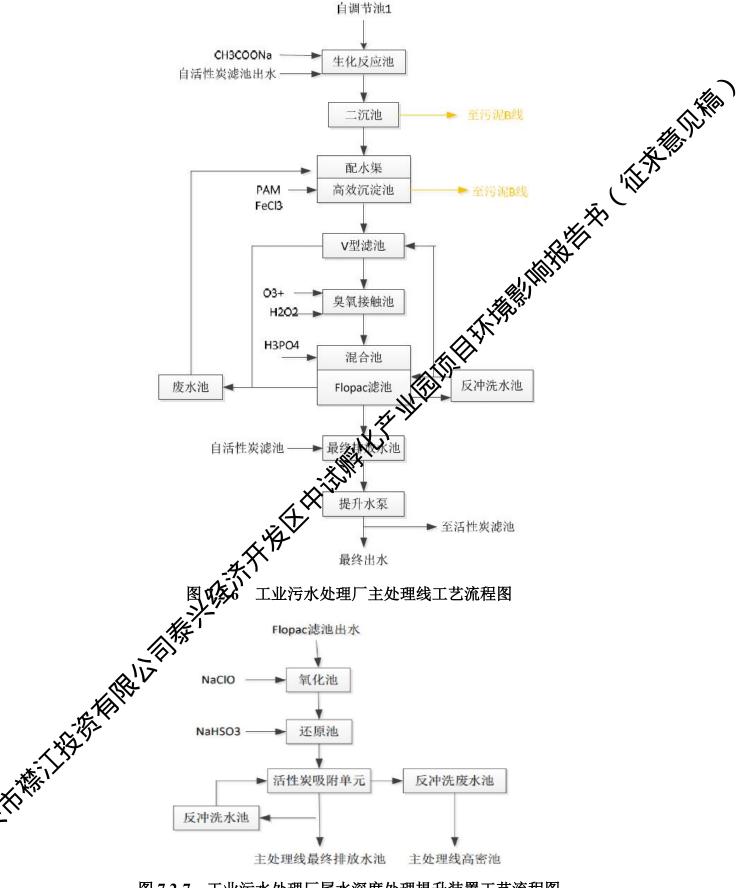
综上所述,本环评认为污水站拟采取的处理工艺可行。


7.2.5. 废水接管方案可行性分析

本项目废水经污水处理站预处理达接管标准后送往开发区工业污水处理厂集中处理。


1、开发区工业污水处理厂概况

开发区工业污水处理厂位于园区澄江西路北侧、滨江路西侧、沙桐公司南侧、长江路东侧。 工业污水处理厂设计规模为5万t/d,其中预处理单元设计规模8000m³/d。处理工艺采用 处理单元(预处理调节池+预处理高效沉淀池+预处理 V 型滤池+预处理活性炭滤池) 单元(主处理调节池+生化反应池+二沉池+高效沉淀池+V型滤池十提升泵房+臭氧接触池 +Flopac 池+尾水泵房)",尾水达标后排入友联中沟并经滨江中沟、洋思港最终进入长江。


工程服务范围: 泰兴经济开发区。本工程建成后将服务于园区内所

工业污水处理厂收集及处理工艺流程图

281

工业污水处理厂尾水深度处理提升装置工艺流程图 图 7.2-7

3、开发区工业污水处理厂出水水质

开发区工业污水处理厂尾水水质主要指标(COD、氨氮、总磷)执行《地表水环境质量标准》(GB3838-2002)中IV类标准,其他污染因子执行《城镇污水处理厂污染物排放标准》(GB1818-2002)中一级 A 标准,特征污染物中的苯胺类、硝基苯排放浓度严于《污水综合排放标准》(GB8978-1996)中一级标准(苯胺类、硝基苯类排放浓度依据为 2018 年 11 月批复的《泰兴市滨江污水处理有限公司入河排污口设置论证报告》中苯胺类和硝基苯类入江浓度。

4、接管可行性分析

⑴水质分析

本项目污水站出水水质达到接管标准要求后,接管开发区工业污水处理,集中处理,接管口各项废水水质指标均可以达到污水处理厂接管水质要求,对污水处理厂产理工艺不会造成不良影响。因此,本项目排放废水能被开发区工业污水处理厂接纳、发产处理后实现达标排放,对周围水环境的影响可得到有效控制。

本项目废水中主要污染物为 COD、SS、氨氮、总氮、磷、AOX、氟化物和全盐量等。 泰兴经济开发区 5 万吨/日工业污水处理厂在设计前户,适区典型企业(济川医药、南大环保、新浦化学、双乐颜料、扬子医药、先尼科和昇科(力)等企业)进行实地调研、取样分析,同时根据经济开发区管委会提供的 2018 年 1 月 2 3 对园区主要化工企业,如新浦化学、金江化学、格林美钴业(回收利用电子废弃物) 2 2 4 化工、南大环保(废水处理)、双乐颜料、锦富化学(染料)、臻庆化工(染料)、 2 6 化学、正大化工、南磷化工、常隆农化、百力化学、天脉化工等进行了特征污染物分析,针对硝基化合物、有机氮化合物、卤素化合物、芳香烃化合物等特征污染物进行工艺的发设计,设置"预处理高效沉淀池+预处理 V 型滤池+预处理活性炭滤池"对特征污染物进行工艺的发设计,设置"预处理高效沉淀池+预处理 V 型滤池+预处理活性炭滤池"对特征污染物进发生除,并强化生化降解能力,因此其污水处理工艺对本项目建设后的废水污染物的处理具有较好的适应性,可有效降低废水中相应污染物的浓度。

因此, 其自废水满足开发区工业污水处理厂接管水质要求, 从水质方面考虑, 接管泰兴 经济开发系新建工业污水处理厂可行。

多外量分析

序 开发区工业污水处理厂处理规模为 5 万 t/d,设计时按照泰兴经济开发区全部开发整体考虑。本项目建成后,全厂接管污水(652t/d)占比仅为 1.3%,因此,开发区工业污水处理厂完全有能力接纳本项目产生的废水。

(3)管网铺设情况分析

开发区工业污水处理厂主要收集开发区内生产废水,园区各主、次干道上均建设了污水管,本项目在开发区规划的工业用地上建设,项目临近道路均规划有污水干管,可满足本项目排污要求。目前该污水处理厂已正常运行,待本项目建成后,可接管排放。

本项目接管口应根据江苏省环保厅《江苏省排污口设置及规范化整治管理办法》的排水体制的规定进行设计,污水排放口一个、雨水排放口一个,并在排污口设置明显排口标志。

综上,本项目废水接管开发区工业污水处理厂是可行的。

7.2.6. 废水处理方案经济可行性分析

本项目新建一座污水处理站,设计处理能力为 300m³/d, 本项目污水处理系统总投资(包括设备费用、运行费用、维修折旧费、药剂费等)约 1500 万元,约占总投资 3%,在企业的承受范围之内,企业完全有能力保证设施的正常运转。因此,从环保和方济方面综合考虑,本项目的废水治理方案是可行的。

7.2.7. 小结

根据上述分析,本项目拟采取的废水处理工艺能够确定。排口出水水质满足工业污水处理厂接管标准,且能稳定运行;拟建地位于工业污水处理厂纳水范围内,区域污水管网已铺设到位;同时,工业污水处理厂接管及排放标准均已减益本项目排放的有毒有害的特征水污染物,污水站设备及运营成本在企业承受范围内,发环保和经济方面综合考虑,本项目的废水治理方案是可行的。

7.3. 噪声防治措施

本项目高噪声源主要来源于装置的进料泵、输送泵、真空泵等;废气处理系统的各类风机;公用工程车间的水泵和空风热等。其源强约为80~85dB(A)。建设单位及入驻企业设计时应尽量选用低噪声设备,减减隔声减振措施,高噪声设备均安置在室内,通过设备减振、厂房隔声、消声等措施能较好地降低噪声向外环境的辐射量。

(1)从声波、降噪

根據本项目噪声源特征,建议在设计和设备采购阶段,优先选用低噪声设备,从而从声源上降低设备本身的噪声。

- (2)从传播途径上降噪
- ①中试装置噪声

由入驻企业负责,针对高噪声中试设备采取加装减震垫等降噪措施,可使其噪声源强降低 15dB(A)左右。

②泵类噪声

由基地统一购置的设备,如各类水泵等,噪声源强较高,应尽量安装在室内,通过加装隔声罩和墙体隔声,可使其噪声源强降低 20dB(A)以上。

③风机噪声

公辅工程及入驻企业所用风机通过加装隔声罩、消声器等,可使风机的隔声量在 15dB(A) 左右。

④空压机

空压机振动较大,通过对空压机设置减震基座,再加上厂房隔声,可使空压机的隔户量在20dB(A)以上。

(3)采用"闹静分开"和合理布局的设施原则,尽量将高噪声源远离噪声敏感区域或厂界。在车间、厂区周围建设一定高度的隔声屏障,如围墙,减少对车间外或厂厂,声环境的影响,种植一定的乔木、灌木林,亦有利于减少噪声污染。

(4)加强设备维护,确保设备处于良好的运转状态,杜绝因**没**不正常运转时产生的高噪声现象。

对各类噪声源采取上述噪声防治措施后,可降低噪声源强 20dB(A)以上,使厂界达标, 能满足环境保护的要求。

7.4. 固体废物防治措施

7.4.1. 固体废物产生与处置情况

根据工程分析章节,本项目固定物主要有废溶剂、滤渣、废包装材料、中试沾染废弃物、废活性炭、废布袋等,其中危险废物由中试基地统一进行收集、暂存和处置,一般固废则由入驻企业自行分类收集、综合处理,生活垃圾则由环卫部门定期清运。

7.4.2. 危险废物收集处置存、运输、处置污染防治及处置措施

本次按照《建设项目危险废物环境影响评价指南》,对危险废物处置全过程的防治措施进行论述,具体下:

1、一定 验废物种类

2、危险废物收集污染防治措施

入驻企业需在中试车间或过程分析室自行设置临时危废暂存区,并标清危险废物的类别及主要成分;中试基地负责定期对各个暂存区的危险废物进行统一收集入库,并负责委托有资质单位进行处理。

说明:入驻企业设置的临时危废暂存区,应做好防腐防渗措施。

3、危险废物贮存场所污染防治措施

(1)危废库选址合理性

本次拟建危废库不在生态保护红线区域、永久基本农田和其他需要特别保护的区域内,地质结构稳定,不在溶洞区或易遭受洪水、滑坡、泥石流、潮汐等严重自然灾害影响的地区,不在江河、湖泊、运河、渠道、水库及其最高水位线以下的滩地和岸坡,以及水津法规规定禁止贮存危险废物的其他地点,附近无环境敏感保护目标。综合来说,项目处置的危险废物暂存场所选址符合《危险废物贮存污染控制标准》(GB18597-2023)的要数。

(2)危废库设置要求

危险废物暂存场地的设置应按《危险废物贮存污染**状**标准》(GB18597-2023)要求设置。危废暂存库应加强"六防"(防风、防晒、防雨、防漏、防渗、防腐),基础必须防渗,防渗层为至少 1 米厚黏土层(渗透系数≤10⁻⁷cm、,或至少 2 毫米厚高密度聚乙烯膜等人工防渗材料,渗透系数≤10⁻¹⁰cm/s。地面与裙**以**采取表面防渗措施,表面防渗材料应与所接触的物料或污染物相容,可采用抗渗混凝土、高密度聚乙烯膜、钠基膨润土防水毯或其他防渗性能等效的材料。

(3)危险废物的入库、暂存4.处置要求

不相容的危险废物必须并存放,并设有隔离间隔断,同时在危险废物容器外部标明警示标识。应当使用符合规定的容器盛装危险废物,容器材质满足相应强度要求,且与危险废物相容,盛装危险废物的容器和包装物按 HJ1276 要求设置危险废物标签。无法装入常用容器的危险废物可用风险按等盛装。对破损的包装容器及时更换,防止危险废物泄漏散落。

- - ②废物贮存设施周围应设置围墙或其他防护栅栏;
 - ③废物贮存设施应配备通讯设备、照明设施、安全防护服装及工具,并设有应急防护设施;
 - ④废物贮存设施内清理出来的泄漏物,一律按危险废物处理;

- ⑤建设单位收集危险废物后,放置在厂内的固废暂存库同时做好危险废物情况的记录,记录上注明危险废物的名称、数量及接收单位名称;
- ⑥中试基地应做好危废转移申报、转移联单等相关手续。加强对固体废弃物管理,做好跟踪管理,建立管理台账;
- ⑦在转移危险废物前,须按照国家有关规定报批危险废物转移计划;经批准后,应当向移出地环境保护行政主管部门申请。产生单位应当在危险废物转移前三日内报告移出地环境保护行政主管部门,并同时将预期到达时间报告接收地环境保护行政主管部门;
- ⑧危险废物委托处置单位应具备相应的资质,运输车辆须经主管单位检查,持有有关单位签发的许可证,承载危险废物的车辆须有明显的标志。

同时,根据《省生态环境厅关于印发江苏省危险废物贮存规范化管理专项整治行动方案的通知》(苏环办〔2019〕149号)要求,在基地运营过程中应做好关节几点:

- ①中试基地应按规定申报危险废物产生、贮存、转移、利益置等信息,制定危险废物年度管理计划,并在"江苏省危险废物动态管理系统"中备案
- ②中试基地应结合基地实际产废情况,建立危险废场台账,如实记载危险废物的种类、数量、性质、产生环节、流向、贮存、利用处置等,息,并在"江苏省危险废物动态管理系统"中进行如实规范申报,申报数据应与台账、发建计划数据相一致;
- ③中试基地应在厂区门口显著位置设置危险废物信息公开栏,主动公开危险废物产生、利用处置情况:
- ④建设单位应按照《危险疾物识别标志设置技术规范》(HJ 1276-2022)、《环境保护图形标志固体废物贮存(处于 场》(GB15562.2-1995)及《危险废物贮存污染控制标准》(GB18597-2023)设施规范设置标志,配备通讯设备、照明设施和消防设施,设置气体导出口及气体净化装置,确保废气达标排放;按照《关于做好江苏省危险废物全生命周期监控系统上线运行工作通知》(苏环办〔2020〕49号)的相关要求,在出入口、设施内部、危险废物运输和通道等关键位置按照危险废物贮存设施视频监控布设要求设置视频监控,并将视频监控信息上传至省厅平台;
- ⑤中试基地应根据危险废物的种类和特性进行分区、分类贮存,设置防雨、防火、防雷、防扬散、防渗漏装置及泄漏液体收集装置。对易爆、易燃及排出有毒气体的危险废物进行预处理,稳定后贮存,否则按易爆、易燃危险品贮存。贮存废弃剧毒化学品的,应按照公安机关要求落实治安防范措施。

根据《关于进一步加强危险废物环境管理工作的通知》(苏环办〔2021〕207号〕,建设单位在生产过程中应做好如下几点:

①严格落实产废单位危险废物污染环境防治主体责任。产废单位必须将危险废物提供或者委托给有资质单位从事收集、贮存、利用处置活动,并有危险废物利用处置合同、资金往来、废物交接等相关证明材料。严禁产废单位委托第三方中介机构运输和利用处置危险废物;严禁将危险废物提供或者委托给无资质单位进行收集、贮存和利用处置。

②严格危险废物产生贮存环境监管。通过"江苏环保脸谱"或危险废物智能称重终端,全面推行产生和贮存现场实时申报,自动生成二维码包装标识,实现危险废物从产生到此存信息化监管。

③严格危险废物转移环境监管。全面推行危险废物转移电子联单,是2021年7月10日起,危险废物通过全生命周期监控系统扫描二维码转移,严禁无二维码转移行为(槽罐车、管道等除外)。

(4)危废库库容合理性分析

表7.4-1 建设项目危险废物贮存场所义设施)基本情况表

序号	贮存场所	危险废物名称	危废类	危险废物 代码	贮存方式	贮存 能力	贮存 周期
1		后聚废液	-X/11/7	900-404-06	桶装		
2		废液	734 000	900-404-06	桶装		
3		废润滑油 4	HW08	900-214-08	桶装		
4		精馏残渣	HW11	900-013-11	桶装		
5		清釜废依					
6		不合格品	HW13	265-101-13	桶装		
7		いる	HW13	265-101-13	開表		
8		发 弃中试产物					
9] .	冷凝废液	HW13	265-102-13	桶装		
10	危废库 地 31%	滤渣	HW13	265-103-13	桶装		7 15
11	地 218	洗涤废渣	HW13	265-104-13	桶装	150t	7~15 天
12		废酸	HW34	900-308-34	桶装		
13	一次 ~ `	废活性炭	HW49	900-039-49	袋装		
14×	(*)	废过滤棉			袋装		
XXIS		废油桶			箱装		
X 16		废活性炭	HW49	900-041-49	桶装		
17		废树脂			桶装		
18		废内包装材料			袋装		
19		过滤废水			桶装		
20		清釜废渣	HW49	900-047-49	桶装		
21		初洗废水			桶装		

22	实验废液			桶装
23	废抹布手套			桶装
24	废样品			桶装
25	废油漆桶			箱装
26	废溶剂			桶装
27	废催化剂			桶装
28	洗涤废渣			桶装
29	过期失效试剂	HW49	900-999-49	桶装
30	污泥	HW49	772-006-49	桶装
31	废含汞灯管	HW29	900-023-29	箱装
32	废电瓶	HW31	900-052-31	箱装

危废暂存库贮存能力:

本项目危废库占地面积 318m²,按照暂存高度按 1m 计,考虑输送通过安全方面的巡检通道,暂存率按 50%计,则危险废物最大暂存容积 159m³(约 150t),项目危险废物产生量约 4257t/a,危险废物按 7~15 天考虑周转量,则危险废物单次周转运为 100t(以 7 天计)。因此,拟建危废库可满足危险废物暂存和周转的需求。

说明:基地危废库运行过程中,会根据实际的危废 如量对周转频次进行优化调整。

4、危险废物运输工程的污染防治措施

- (1)危险废物公路运输应按照《道路危险货物、输管理规定》(交通部令〔2005〕第9号)、 JT617以及JT618执行;
- (2)危险废物的运输车辆须经主管单位查查,并持有有关单位签发的许可证,负责运输的司机应通过培训,持有证明文件;
 - (3)承载危险废物的车辆须有外显的标志或适当的危险符号,以引起注意;
- (4)载有危险废物的车辆发路上行驶时,需持有运输许可证,其上应注明废物来源、性质和运往地点:
- (5)组织危险废物污运输单位,在事先需做出周密的运输计划和行驶路线,其中包括有效的废物泄漏情况和的应急措施:
 - (6)厂价总险废物的转移按照《危险废物收集 贮存 运输技术规范 》(HJ2025-2012)实施。 《4.6险废物利用或处置方式的污染防治措施
- 本项目产生的危险废物类比有 HW06、HW08、HW11、HW13、HW34、HW49 等,均委 托有资质单位处理。

根据调查,项目周边危险废物处置单位处置情况汇总如下:

表 7.4-2 项目周边部分危废处置资质信息一览表

	次居的总力验	位置		中方厄及 又 直页灰旧芯 见农
一片写	资质单位名称	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	经营许可证	危废处置类别及代码
1	威立雅环保科技(泰 兴)有限公司	泰兴经济开发区 福泰路1号	JS1283OOI576-4	焚烧处置医药废物(HW02),废药物、药品、HW03),农药废物(HW04),木材防腐剂废物(HW05),废有机溶剂与含,机溶剂废物(HW06),热处理含氰废物(HW07),废矿物油与含矿物油废物、108),油/水、烃/水混合物或乳化液(HW09),精(蒸)馏残渣(HW11),染料、料废物(HW12),有机树脂类废物(HW13),新化学物质废物(HW14),原、材料废物(HW16),表面处理废物(HW17),废酸(HW34),废碱(HW35、11机磷化合物废物(HW37),有机氰化物废物(HW38),含酚废物(HW39),食或废物(HW40),含有机卤化物废物(HW45),其他废物(HW49,仅限 3、101-49、900-039-49、900-041-49、900-042-49、900-046-49、900-047-49、900-049),废催化剂(HW50,仅限 261-151-50、261-152-50、261-183-50、263-013-50、11-006-50、275-009-50、276-006-50、900-048-50),合计 30000 吨/年。
2	泰州市惠明固废处置 有限公司	兴化市戴南镇曙 光街 278 号	JS12810015454	焚烧处置处药废物(HW02),废药物、药品(HW03),农药废物(HW04),木材防腐剂之物(HW05),废有机溶剂与含有机溶剂废物(HW06),废矿物油与含矿物、类物(HW08),精(蒸)馏残渣(HW11),染料、涂料废物(HW12),有机构指类废物(HW13),新化学物质废物(HW14),感光材料废物(HW16),含金属羰基化合物废物(HW19),含铬废物(HW21),无机氟化物废物(HW32),有机磷化合物废物(HW37),有机氰化物废物(HW38),含酚废物(HW39),含醚废物(HW40),含有机卤化物废物(HW45),其他废物(HW49,仅限 900-039-49、900-041-49、900-042-49、900-046-49、900-047-49、900-999-49),废催化剂(HW50,仅限 263-013-50、271-006-50、275-009-50、276-006-50、900-048-50、261-151-50),合计 18000 吨/年。
3	泰兴市福昌环保科技 有限公司	泰兴市经济 1 发 区通汉 366号	JS128300I568-1	1#焚烧炉(10000t/a 回转窑)焚烧处置医药废物(HW02),废药物、药品(HW03),农药废物(HW04),木材防腐剂废物(HW05),废有机溶剂与含有机溶剂废物(HW06),废矿物油与含矿物油废物(HW08),油/水、烃/水混合物或乳化液(HW09),精(蒸)馏残渣(HW11),染料、涂料废物(HW12),有机树脂类废物(HW13),感光材料废物(HW16),废酸(HW34,仅限 251-014-34),废碱(HW35,仅限 261-015-35),有机氰化物废物(HW38),含酚废物(HW39),含醚废物(HW40),其他废物(HW49,

				仅限 900-041-49),废催化剂(HW50,仅限 261-152-50、261-152-50、271-006-50、
				275-009-50、276-006-50),合计10000吨/年。
				核准焚烧处置医药废物(HW02)、废药物 类 (HW03)、农药废物(HW04)、废
				有机溶剂与含有机溶剂废物(HW06)、 物油与含矿物油废物(HW08)、油/水、
	 江苏爱科固体废物处	 泰兴经济开发区		烃/水混合物或乳化液(HW09)、精(************************************
4	理有限公司	过船西路9号	JS1283OOI548-4	有机树脂类废物(HW13)、有机(************************************
	性有限公司 	延加四路95		废物(HW40)、含有机卤化数数物(HW45)、其他废物(HW49,仅限 900-039-49、
				900-041-49、900-042-49、200046-49、900-047-49、900-999-49)、废催化剂(HW50,
				仅限 263-013-50、271-006-50、275-009-50、276-006-50),合计 15000 吨/年。
				焚烧处置医药废物(NW02),废药物、药品(HW03),农药废物(HW04),木材
				防腐剂废物(HXXX),废有机溶剂与含有机溶剂废物(HW06),废矿物油与含矿
		 泰兴经济开发区		物油废物(HW09),油/水、烃/水混合物或乳化液(HW09),精(蒸)馏残渣(HW11),
5	泰州联泰固废处置有		ICT7120200D017.4	染料、涂料废物(HW12),有机树脂类废物(HW13),新化学物质废物(HW14),
3	限公司	马甸水产良种场	JSTZ1203OOD017-4	感光林林爱物(HW16),表面处理废物(HW17),有机氰化物废物(HW38),含
		北侧 		融(HW39),含醚废物(HW40),含有机卤化物废物(HW45),其他废物(HW49,
				900-039-49、900-041-49、900-042-49、900-046-49、900-047-49、900-999-49),
			\ \ \square\ \square\ \	合计 24000 吨/年。
			7	HW02 医药废物, HW03 废药物、药品、HW06 废有机溶剂与含有机溶剂废物, HW08
	去W++W田南日田	丰以子及汝工华	XY7	废矿物油与含矿物油废物、HW09油/水、烃/水混合物或乳化液、HW11精(蒸)馏残渣、
6	泰兴市成兴固废处置	泰兴市经济开发	苏环危望泰字 32 号	染料、涂料废物(HW12),有机树脂类废物(HW13)、感光材料废物(HW16),表面处理
	有限公司	区新木路2号	المَّذِينَ الْمُرْانِينَ الْمُرَانِينَ الْمُرَانِينَ الْمُرَانِينَ الْمُرَانِينَ الْمُرانِينَ الْمُرانِينَ الْ	废物(HW17)、HW21 含铬废物、HW49(不含废弃危险化学品)、HW50,合计 5000
			\ =\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	吨/年。

本项目危废产生类别均在上述汇总的危废处置单位核准接收处理的范围内,而且均有足够的余量接纳处置本项目产生的危险废物,满足项目危险废物委托处置的要求。

6、危险库废气收集处置措施

危废在库内暂存过程中,会挥发有机废气,本次配置2套活性炭吸附装置对废气进行收集 处置,确保危废库废气稳定达标排放。

7.4.3. 一般固废防治措施分析

本项目运营期产生的一般固废主要有废外包装、废离子交换树脂、食堂废油脂、生产垃圾等,根据设计,基地内不设置一般固废库,各类废物由产废单位自行收集暂存及处置,在收集暂存过程中应注意以下内容:

- (1)各类固体废物在收集、贮存、运输、利用、处置过程中,必须采取、)散、防流失、防渗漏或者其他防止污染环境的措施。
 - (2)在运输过程中不得沿途丢弃、遗撒固体废物。
 - (3)对收集、贮存固体废物的设施、设备和场所,应当加强管理,保证其正常运行和使用
 - (4)所有固废均应清理及时,避免腐烂、恶臭发生
 - (5)禁止将固废向水体倾倒或私自填埋。
- (6)产废企业应按照《一般工业固体废物管理 6账制定指南(试行)》(生态环境部 2021 年第 82 号公告)要求,建立一般工业固**庆**6账。

7.4.4. 小结

综上所述,固体废物的处置**次**遵循分类原则、回收利用原则、减量化原则、无害化原则及分散与集中相结合的原则,将不同类型的固体废物进行分类收集、分类处理,本项目产生的固废经妥善处理、处置后,并以实现零排放,对周围环境及人体不会造成影响,亦不会对环境产生二次污染,所采水疗治理措施是可行的。

7.5. 土壤及地下水防治措施

7.5.1. 污染%节

上程所处区域的地质情况,本项目可能对地下水环境造成影响的环节主要包括:各中原料储存区、污水处理系统(含管线)、危废库、应急事故池及初期雨水池等的跑、冒、高、漏等下渗对地下水影响。

7.5.2. 地下水、土壤防污原则

对于厂区地下水、土壤防污控制原则,应坚持"注重源头控制、强化监测手段、污水集中处理、完善应急响应系统建设"的原则,其宗旨是采取主动控制,避免泄漏事故发生,但若发生事故,则采取应急响应处理办法,尽最快速度处理,严防对下游地区产生影响。

针对可能发生的地下水和土壤污染,本项目营运期土壤和地下水污染防治措施将按照"派头控制、分区防治、污染监控、应急响应"相结合的原则,从污染物产生、入渗、扩散、流流响应全方位进行防控。

7.5.3. 源头控制措施

项目应选择先进、成熟、可靠的工艺技术和较清洁的原辅材料,采用清楚产审核等手段对生产全过程进行控制,并对产生的各类污染物进行合理的回用和治理。 不可能从源头上减少污染物的产生和排放,降低生产过程和末端治理的成本。

严格按照国家相关规范要求,对工艺、管道、设备、仓库、取相应措施,以防止和降低污染物的跑、冒、滴、漏,将污染物泄漏的环境风险事故,到最低程度。

防渗工程的设计使用年限不应低于设备、管线及产物筑物的设计使用年限。

堆放各种危险废物的仓库按照国家相关规范**某**水,采取防泄漏、防溢流、防腐蚀等措施, 严格化学品的管理。

对可能泄漏有害介质和污染物的设备和管道敷设采取"可视化"原则,即管道尽可能地上敷设,做到污染物"早发现、早处理"之城少由于埋地管道泄漏而可能造成的地下水污染。对危废仓库、料坑等区域必须采取旅港措施,防止对地下水和土壤的污染。

7.5.4. 末端防治(分区防热分措施

主要包括厂内污染之地面的防渗措施和泄漏、渗漏污染物收集措施,即在污染区地面进行防渗处理,防止严格地面的污染物渗入地下,并把滞留在地面的污染物收集起来,集中处理,从而避免对大水的污染。

根据与试装置、辅助设施及公用工程可能泄漏的特殊性质,将污染区分为非污染防治区、一般污染防治区、重点污染防治区,对不同的污染防治区采取不同等级的防渗方案。重点污染治区是指对地下水环境有污染的物料或污染物泄漏后,不能及时发现和处理的区域,主要包括地下管道、(半)地下污水池等;一般污染防治区指对地下水环境有污染的物料或污染物泄漏后,可及时发现和处理的区域或部位,主要包括架空设备、容器、管道、地面和明沟等;非污染防治区是一般和重点污染防治区以外的区域或部位。

各分区的防渗设计应满足《环境影响评价技术导则 地下水环境》(HJ610-2016)的要求,一般污染区的防渗设计应满足《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020)的要求,重点及特殊污染区的防渗设计应满足《危险废物贮存污染控制标准》(GB18597-2023)的要求。

本项目不新增用地,厂区防腐、防渗等防止地下水污染预防措施依托现有项目。经调查 建设中的现有项目已针对可能对地下水造成影响的各环节,按照"考虑重点,辐射全面"的 防渗原则,一般区域采用水泥硬化地面,生产车间、仓库、污水处理站等区域采取重点防腐防 渗,详见下表及厂区分区防渗图 7.5-1。

表7.5-1 中试基地现有污染防渗分区一览表

序号	分区 类别	名称	防渗区域	防渗等级
1	重点 防渗区	1#~8#中 试楼	地面	150mm)+水泥基渗透结晶型、渗涂层(厚度不小于 0.8mm) 结构型式;防渗结构层、透系数不应大于 1.0×10 ⁻¹⁰ cm/s。
2	一般 防渗区	综合运维 楼	地面	刚性防渗结构,抗渗 化) 厚度不宜小于 100mm),渗透系数 不应大于 , 10 ⁻⁷ cm/s;或采用其他防渗结构

表7.5-2 中试基地新增构筑物污染防渗分区一览表

	表 7.5-2 中国基地别增码现代分类的参加区 见衣						
序号	分区类别	名称	对渗区域	防渗等级			
1		污水处理站	世 底部和四周				
2		事故应急池	池底、池壁				
3		初期雨水池	◇ 池底、池壁	刚性防渗结构,水泥基渗结晶型			
	重点	污水管线等	管壁及四周土壤	抗渗砼(厚度不宜小于 150mm) +水泥基渗透结晶型防渗涂层			
4	^{里点} 防渗区	中试区废水收集罐、外套	池底及池壁	一 + 小			
		罐) 💉 🖊	他从汉他型				
5		1#~3#甲集仓库	地面及裙角	1.0×10 ⁻¹⁰ cm/s。			
6		综合库	地面及裙角	110 10 011 50			
7		是 废库	地面及裙角				
		综合水站	水池底部和四周				
	6几7十八分	60 52 24	K TO 焚烧系统区域	地面	刚性防渗结构,抗渗砼(厚度不		
8	一般防渗	> 污水处理辅房	地面	宜小于 100mm),渗透系数不应 大于 1.0×10 ⁻⁷ cm/s;或采用其他			
		动力车间	地面	方 1.0^10 Cill/s; 或未用共祀 防渗结构			
		中心控制室	地面				

"快途径及对应措施分析可知,厂区采取的防渗措施满足相关要求,可有效控制项目废 要物下渗现象,避免污染土壤和地下水。

在落实各项防渗措施的基础上,本次评价同步提出如下建议:

- ①企业内部加强环境监管,建立特征污染物日监测报告制度,加强土壤、地下水环境监测工作,对车间或者设施废水中污染物排放进行监控,了解企业污染物产生及排放情况。
 - ②加强污水输送管道检查,确保无渗漏,严格控制排污量,做到达标排放。

7.5.5. 监控措施

建立厂区地下水环境监控体系,包括建立地下水监控制度和环境管理体系、制定监测计划、配备必要的监测仪器和设备或委托第三方检测单位,以便及时发现问题,及时采取措施。

本项目设置地下水跟踪监测井(场地下游至少1个)及土壤跟踪监测点位,其中土壤监测点位主要位于危废库区域、污水站区域及中试区废水收集罐(池套罐)等区域,监测因子根据入驻企业中试内容确定,地下水每年监测一次、土壤每5年监测一次。

7.5.6. 小结

综上所述,在采取源头控制、分区防控、污染监控及应急响应等措施的前提,可有效防止项目运营期间对土壤及地下水造成污染。

7.6. 排污口规范化设置

该项目的排污口设置必须符合国家的排污口规范化的要求。

(1)废水排放口

建设项目实施雨污分流,设置污水排放口1个、雨水水次口1个,废水通过园区污水管网汇入园区工业污水厂集中处理,污水排口应设置明显的水放口标志牌,建设项目不设直接排入水环境的废水排污口。

项目建成后,排放口必须具备方便采样之类,排放口应视污水流量的大小参照《适应排污水口尺寸表》的有关要求设置,污水面低处地面或高于地面 1 米的,就应加建采样台阶或梯架; 尾水直接从暗渠排入污水管道的,成在企业边界内、直入污水管道前设采样口(半径>150mm); 项目无压力排污管道设计。

做好废水三级防控,

- ①一级:确保各类发水能够有效收集并进入污水站处理;
- ②二级: 确保事故状态时,事故废水能够有效收集并进入事故池暂储:
- ③三级、保雨水排口、污水排口切换阀的正常使用,事故状态时,能够及时地关闭雨污口阀门, 发达绝废水出厂。

的 方水排口需安装流量计、pH及 COD 在线监测系统并与生态环境局联网。

(2)废气排放口

本次设置7个排气筒,在排气筒附近地面醒目处设置环保图形标志牌,标明排气筒高度、 出口内径、排放污染物种类等。废气排放口必须符合《污染源监测技术规范》的要求,便于采 样、监测的要求,各废气管道应设置永久采样孔,其采样口由环境监察支队和环境监测站共同 确认。

(3)固定噪声排放源

按规定对固定噪声进行治理,并在边界噪声敏感点且对外界影响最大处设置标志牌。

(4)固体废物贮存

建设项目设置室内临时贮存库,应对各种固体废物分别收集、贮存和运输,临时贮存库有防扬散、防流失、防渗漏等措施,并应设置标志牌。

(5)设置标志牌要求

环境保护图形标志由环保部统一定点制作,并由市环境监理部门根据企业排污情况统一订购。企业排污口分布图由环境监察支队统一订制。排放一般污染物口(源),设置提示式标志牌,排放有毒有害等污染物的排污口设置警告标志牌。

规范化排污口的有关设置(如图形标志牌、计量装置等) 保设施,排污单位必须负责日常的维护保养,任何单位和个人不得擅自拆除。

7.7. 环境风险防治措施及应急措施

拟建工程建设性质为改扩建,根据调查,现产项目主要为构筑物的建设,未制定环境风险 防治措施或应急措施,故本次对改扩建后的**次**中试基地的风险防范措施进行分析论述,具体 如下。

7.7.1. 环境风险管理

7.7.1.1. 环境风险管理目标

环境风险管理目标是来的最低合理可行原则(as low as reasonable practicable,ALARP)管控环境风险。采取的现在风险防范措施应与社会经济技术发展水平相适应,运用科学的技术手段和管理方法,对环境风险进行有效的预防、监控、响应。

7.7.1.2. 机构

企业有专门的安全环保管理机构,配备管理人员,通过技能培训,承担该公司运行后的环保全工作。

安全环保管理机构主要工作:结合当前的环境管理要求和泰兴市地区的具体情况,制定本公司的各项安全生产管理制度、严格的生产操作规则和完善的事故应急计划及相应的应急处理手段和设施,同时加强安全教育,以增强职工的安全意识和安全防范能力。

7.7.2. 风险防范措施

本次结合《江苏省环境影响评价文件环境应急相关内容编制要点》(苏环办〔2022〕338 号)文件要求,制定中试基地风险防范措施,具体如下:

7.7.2.1. 总图布置和建筑安全防范措施

在厂区总平面布置方面,严格执行相关规范要求,所有建、构筑物之间或与其他场所之间 足够的防火间距,防止在火灾或爆炸时却互取一 留有足够的防火间距,防止在火灾或爆炸时相互影响;严格按工艺处理物料特性, 危险区划分。

厂区道路实行人、货流分开(划分人行区域和车辆行驶区域、不重叠 驶路线、严禁烟火标志等并严格执行;在厂区总平面布置中配套建设应为被援设施、救援通道、 应急疏散避难所等防护设施。按《安全标志》规定在装置区设 产的安全标志。

2、建筑安全防范

室外设备区采用敞开式,以利于可燃气体的扩散,防 对人身造成危险的运转设备 配备安全罩,无高空作业。作业平台、楼梯、钢爬梯头按规范要求设计围栏、踢脚板或防护 栏杆,围栏高度不应低于1.2米,脚板应使用防滑板。在楼板操作及检修平台有孔洞的地方设 有盖板。

根据火灾危险性等级和防火、防爆要水,建筑物的防火等级均应采用国家现行规范要求按 二级耐火等级设计,满足建筑防火火 。凡禁火区均设置明显标志牌。各种易燃易爆物料均储 存在阴凉、通风处,远离火源4.避免与强氧化剂接触;安放易发生爆炸设备的房间,不允许任 校制室进行。安全出口及安全疏散距离应符合《建筑设计防火规 何人员随便入内,操作全部 (GB50016-2012%的要求。

和物料性质,在中试车间和储运区人身可能意外接触到有害物质而引起烧伤、 ★的区域内,设置紧急淋浴和洗眼器,并加以明显标记。劳动作业人员配备必要 用品。

危险化学品存储

危险化学品存储要按照各种物质的理化性质采取隔离、隔开、分离的原则储存;各种危险 化学品要有品名、标签、MSDS 表和应急救援预案;危险化学品仓库要有防静电措施,加强通 风。白玻璃要涂色,防止阳光直晒,室温一般不宜超过30℃。

7.7.2.2. 危险化学品储运安全防范措施

- 1、本项目应严格按照《危险化学品安全管理条例》的要求,加强对危险化学品的管理;制定危险化学品安全操作规程,要求操作人员严格按操作规程作业;对从事危险化学品作业人员定期进行安全培训教育;经常性对危险化学品作业场所进行安全检查。
- 2、设立专用库区,其需符合储存危险化学品的相关条件(如防晒、防潮、通风、防雷、防静电等),实施危险化学品的储存和使用;建立健全安全规程及值勤制度,设置通信、报警装置,确保其处于完好状态;对储存危险化学品的容器,应经有关检验部门定期检验合格,才能使用,并设置明显的标识及警示牌;对使用危险化学品的名称、数量进行严格登记;凡储存、使用危险化学品的岗位,都应配置合格的防毒器材、消防器材,并确保其处于完好状态;所有进入储存、使用危险化学品的人员,都必须严格遵守《危险化学品管理》度》。
- - 4、气体使用及贮存安全防范措施

气体在使用及贮存方面安全防范措施如

- ①空瓶和充装后的重瓶应分开放置,一位与其他气瓶混放,不应同时存放其他危险物品。 重瓶存放期不应超过三个月。
- ②使用气瓶时,应有称重振器;使用前和使用后均应登记重量。使用气体系统应装有膜片压力表、调节阀等装置。操作中应保持气瓶内压力大于瓶外压力。
- ③不应使用蒸汽炉火直接加热气瓶。不应将油类、棉纱等易燃物和与气体易发生反应的物品放在气瓶附近。
- ④气瓶 发应器之间应设置截止阀,逆止阀和足够容积的缓冲罐,防止物料倒灌,并定期检查以**对**表效。

这连接气瓶用管应经耐压试验合格。

⑥不应将气瓶设置在楼梯、人行道口和通风系统吸气口等场所。使用气瓶处应有遮阳棚, 气瓶不应露天暴晒。气瓶不应露天存放,也不应使用易燃、可燃材料搭设的棚架存放,应贮存 在专用库房内。

- ⑦开启气瓶应使用专用扳手。开启瓶阀要缓慢操作,关闭时亦不能用力过猛或强力关闭。 气瓶出口端应设置针形阀调节气流量,不允许使用瓶阀直接调节。作业结束后应立即关闭瓶阀, 并将连接管线残存气体回收处理干净。
- ⑧空瓶返回生产厂时,应保证安全附件齐全。气体气瓶长期不用,因瓶阀腐蚀而形成"死瓶"时,用户应与供应厂家取得联系,并由供应厂家安全处置。
- ⑨气体钢瓶设备的压力表、液位计、温度计应装有带远传报警的安全装置。在气体使力 间及气体钢瓶储存区分别设置至少2个气体泄漏检测报警仪,分别位于主导风向的上 作业场所和贮气场所空气中气体含量不应高于最高允许浓度。
- ⑩气体使用、贮存、运输单位相关从业人员,应经专业培训、考试合格、取得合格证后, 方可上岗操作。
- ①气体使用、贮存、运输车间(部门)负责人(含技术人员) / 应熟练掌握工艺过程和设备性能,并具备气体事故处理能力。
- ②贮存、运输、使用等气体作业场所,都应配备应量。修器材和防护器材,并定期维护。 7.7.2.3. 大气环境风险防范措施

对于中试过程中可能发生事故的工况,要求成成中均要采取有效的应变措施,现将主要具体措施简述如下:

1、有毒气体泄漏应急措施

本项目部分中试所用原料大部分。有易燃、易爆或毒性,所以按照《石油化工可燃气体和有毒气体检测报警设计规范》。4、GB50493-2009)要求在设备法兰口等可能泄漏和积聚可燃/有毒气体的场所设立一定数量的可燃/有毒气体探测器。比空气重的气体探测器安装高度高出该层地坪 0.3~0.6m,比较气轻的气体探测器安装高度距离该层项部 0.3~0.6m,安装位置尽可能靠近释放源。探测器 4~20mA 信号接入控制室 DCS 控制柜,由 DCS 系统兼作气体报警控制器。报警器以上20股报警:当可燃性气体达到 25%LEL(爆炸下限)或有毒气体达到 100%最高容许流度/短时间接触容许浓度时,报警系统提供现场及控制室声光报警,提示操作人员及时间还规场巡检;当可燃性气体达到 50%LEL(爆炸下限)或有毒气体达到 10%直接致害浓度时,报警系统提供声光报警,同时可输出开关量联锁切断进料供应或联锁启动相应气体收集处理、消防设备。

有毒气体发生泄漏时应采取以下措施。

①划定警戒区。

有毒气体泄漏事故发生后,应迅速撤离泄漏污染区人员至上风处,并立即进行隔离,严格限制出入。消防队到达现场后,要根据风速、风向、地形及建筑物的状况,通过有毒气体探测仪测试,划出警戒区,在有关地点设置"禁止入内""此处危险"的标志,或根据情况设立警戒岗,切断通往危险区域的交通,禁止车辆、无关人员进入危险区。

②救人、侦察。

消防人员要根据毒气泄漏扩散的范围,与到场的公安、武警等人员紧密配合,采取有关措施,将下风方向的人员动员疏散出危险区;对已中毒人员救出危险区后,解开衣服,输氧并及时送往医院治疗;对在泄漏源中心的严重中毒者,消防队员要佩戴防毒空气呼吸器和防毒衣组成救援小组,迅速深入毒区将中毒人员抢救出来并迅速送往医院抢救治疗。

③在抢救疏散人员的同时,要通过知情人了解掌握泄漏点的管道或事故点的泄漏情况、地理环境等,如果在出事地点难以找到知情人时,消防人员应组成侦查,组在加强自我保护措施的前提下,深入毒区查明泄漏点的装置、管道或贮罐、钢瓶的放坏情况,以便采取相应的排险措施。

④堵漏排险。

消防队到达事故现场后,消防车至少要停在,双方向 60m 至 100m 处,根据侦察到的情况,与单位技术人员共同研究制定处置方法,并实验程技术人员密切配合,采取有效措施,排除险情,防止事态扩大。一是关阀断源。对法型泄漏,可采取关阀断源措施。二是堵塞漏洞。如管道断裂、阀门损坏,在无条件关阀或设的情况下,可用木塞或随车充气堵漏塞、充气堵漏包扎带,实施堵塞漏洞,排除险情。

⑤化学反应排险。

在无法采取措施**从**排险的特定环境条件下,可将泄漏的贮罐(瓶、桶)浸入过量的化学品中进行化学反应,生成物化学性质稳定,都溶于水,且无毒、无挥发性等,采取此办法切实可行。

2、众灾、爆炸应急措施

次规火灾人员立即向部门领导和总调中心报告;报告时讲明火灾地点、着火物品、火势大 及周围的情况,值班员组织岗位人员用灭火器、消火栓、水管组织灭火,但应注意物料的性 质,对于与水接触反应的物料,严禁用水和泡沫进行灭火;尽量将周围易燃易爆物品转移或隔 离;根据火势大小、严重程度,决定疏散现场人员到安全区;总调中心值班员接到报告后,立 即向公司应急指挥中心报告和打"119"电话报警;组织义务消防小组迅速集结,增援灭火;指 挥抢险小组佩戴空气呼吸器紧急抢救受困(伤)人员和疏散现场无关人员,划出警戒线;医疗 急救小组对抢救出来的受伤人员进行现场救治;联络小组负责公司应急救援指挥小组的通讯联络和信息传递工作;机动小组集结待命,随时准备投入救援战斗;后勤保障小组要保证应急救援物资及时运到现场,协助应急救援指挥小组做好其他后勤保障工作;负责派人到公司大门接消防队,带消防队到达火灾现场;消防队到达火灾现场后,由消防队负责指挥灭火。公司应急救援指挥小组协助做好其他工作。

3、RTO 焚烧炉故障

焚烧炉如发生各种原因的设备故障,如停电、停水、超压,均会自动停炉。在发生紧急停炉条件时,设备中的气体管道阀门自动关闭(其有储能功能),且进风阀门也关闭,开启急排烟囱,烟气由二燃室顶部排到大气中。急排烟囱顶端安装自动联锁气动排烟囱。在每次排烟后能恢复原位。排烟口采用水封,防止在二燃室正常运行时烟气泄漏。

针对停电:自动停炉时等待事故排查之后,再重新点火启动整个系统;

针对停水:设备中有软水箱、水箱、备用水泵,可提供发炉继续运行 2~3 小时,并提供故障报警,提供排除故障;烟气净化系统出现故障时,发炉处理,等待故障解决后再焚烧处理。

针对爆炸:

- ①根据《危险废物焚烧污染控制标准》、 B18484-2001)"4.2 除易爆和具有放射性以外的危险废物均可进行焚烧"的要求,故此为易爆的或有放射性的废弃物不进行处理。
- ②如在投入时混入少量的易爆化物质,项目采用的回转窑拥有可靠的防爆措施:二燃室出口有泄压阀,如压力超过设定状会自动泄压;有效的控制空气量的供给防止过量的气体产生。针对易燃性物质,进入炉水石,通过控制空气的供给来控制其燃烧状态。

焚烧炉采用一、纸级报警:

- 二级报警是70焚烧炉设备某一设备出现故障但还不会对人和设备造成损坏,不会出现严重的后果的, 200 此类故障采用二级报警,对于二级报警的表现和处理方法:显示所报警设备的名称及200 的故障类型,启动声光报警器以提醒操作人员注意,并自动停掉与之相关的设备.以保护设备出现更大的故障。
- 一级报警是对焚烧炉设备某一设备出现严重故障,可能会出现对人和设备造成损坏的,采用一级报警。对于一级报警的表现和处理方法:显示所报警设备的名称及可能的故障类型,启动声光报警器能提示操作人员注意,并自动停止整个系统,打开安全阀门,关闭进风阀门,以保护设备与人身安全。

项目焚烧系统应急系统设置如下:

当系统遇到停水时: 备用水箱内的水可供系统正常使用 3 小时以上。

突然停电时的安全停止装置: 当系统遇到停电时,自动停止整个系统,同时由设备自备电源打开安全阀门,并关闭气化炉的进风阀门。保证气化炉内与外界零压差。

异常燃烧时安全停止装置: 当燃烧炉内温度急速上升而超过设定的极限温度后, 为了保护设备的安全, 系统自动启动一级报警。

极低水位时运转停止装置: 当水位传感器感应到水位低于极低水位时, 为了保证设备的安全, 系统自动启动一级报警。

异常燃烧时的报警装置: 当燃烧炉内的温度急速上升超过正常范围但还有达到极限温度时, 启动二级报警。

在发生紧急停炉条件时,如停电、停水、超压,开启废气应条为换,烟气由 RTO 系统切换至应急活性炭箱体。

- ②若其余废气处理设施装置无法达到预期处理效果。处立刻切换至应急活性炭箱。
- ③各中试装置均设有事故联锁紧急停车系统, 之类生事故立即停车。

4、人员疏散

项目涉及大量有毒有害及易燃易爆危险, 品,高浓度时会危及生命,因此在发生事故时第一时间疏散员工及其他人群,疏散时依据当时风向,将人群疏散至当时风向的上风向。

7.7.2.4. 事故废水环境风险防范措施

1、事故状态下废水量估算和事故应急池

厂区污水处理站发生的事故多为操作运行不当,或污染物浓度突然变化,致使污水处理效果下降,影响接管水体。此外,在发生重大泄漏或火灾事故时的消防废水等可能在事故状态下通过雨水系统从西水排口进入水体,成为主要的事故水环境污染隐患。因此应将事故废水截留在事故池内。次切断事故情况下雨水系统排入外环境的途径。当企业火灾事故时,应关闭雨水管网排放口的阀门并打开事故池的阀门,使厂区事故时的雨污水流入事故池,保证事故时的雨污水流。

根据 6.7.2 章节水量预测,事故废水产生量约 1316.4m³,本项目拟建设一座容积为 1500m³ 的应急事故池,根据平面布局图,事故池及初期雨水池均设置与基地西北侧,依据厂区地形标 高,该位置地势较低,废水可通过自流形式进入池体,可满足事故状态下事故废水的收集。

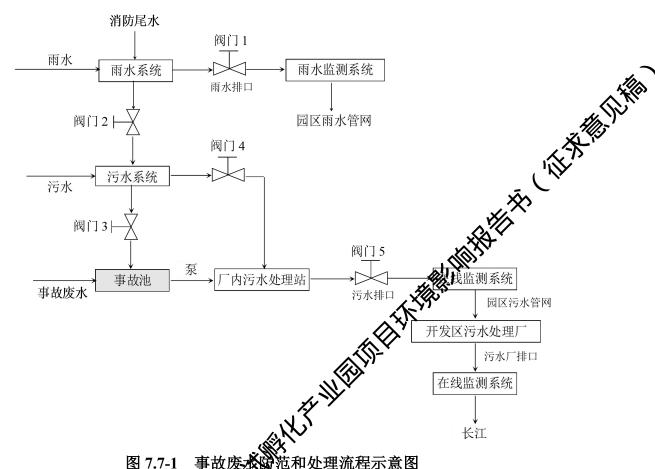
2、三级防控体系

厂内拟建1座应急事故池,若污水处理设施出现故障不能正常运行,应收集其所有废水入

事故池。实际运行中,如果事故池储满废水后污水处理站还无法正常运行,则必须临时停止研发,当污水处理设施正常运行以后,除处理公司日常产生的废水以外,还应该将事故池里的废水一并处理掉。公司污水处理站总排口与外部水体之间均要安装切断设施,若废水处理设施运行不正常时,启用切断设施,确保不达标的研发废水控制在厂内,不进入园区污水管网。

厂区应设置消防尾水收集管线及事故池等事故状态下事故废水的收集、处置措施,事故波或缓冲池应有足够的容量,事故废水不得外排。

项目设置事故池保证研发单元发生事故时,泄漏物料或消防、冲洗废水能迅速、安全地集中到事故池,进行必要的处理。一旦发生事故,应立即关闭雨水(消防水)管道成门,切断雨水排口,打开消防水池管道阀门,使厂区内事故废水汇入事故池,待污水处设施正常运行时再送入污水处理设施处理。


经常对排水管道进行检查和维修,保持畅通、完好。加强企业**发**产管理制度和安全教育,制定防止事故发生的各种规章制度并严格执行,使安全工作做了经常化和制度化。

雨水管网超标排污水可能来自车间、厂区污染的初期,和污染的消防水。为防止雨水管 网超标排污,参照《中国石油天然气集团公司石油化工业业水污染应急防控技术要点》要求,针对项目污染物来源及其特性,以实现达标排放和满足应急处置为原则,建立污染源头、处理 过程和最终排放的"三级防控"机制,厂内设工、拦截措施:

- ①一级防控措施:设围堰。围堰的存成容积设置应达到贮槽正常情况下的物料贮量,保证在发生泄漏后不外溢;使用化学品或产的设备区域、仓储区域、危险物临时储存点,应设防渗硬化地面和围挡,防止物料泄漏后不外溢。此措施可以有效防止泄漏物料进入雨水管网。
- ②二级防控措施:设置放收集槽、池或罐,装置区设地沟收集系统,物料一旦外溢,通过沟、槽、池予以收集,发持染严重污染物的装置或厂区设置事故池,切断污染物与外部的通道,将污染控制在厂内,防止重大事故泄漏物料和污染消防水造成的环境污染。
- ③三级风光措施:厂区拦截。在厂区排水口设置截止阀,将污染物控制在区内,防止重大事故泄漏物料和污染消防水造成的环境污染,厂区内事故池和排雨水口闸门,防止污染物一旦流入的水系统,消防事故池接纳污染废水,同时关闭闸门,将污水排入厂内污水处理装置处理。这雨水设置在线监控及自动切断回抽装置,发生事故排放时,雨水自动监控系统首先进行报警,雨水回抽泵自动启动并同时切断雨水阀门,将污染雨水回抽至厂区事故池,待正常后进入污水处理站处理达标后进入污水管网。

开发区设置事故池,河道入江口设置切断阀,当发生重大事故,雨水进入开发区河道时,立即上报开发区环保部门,成立应急指挥部,按照要求关闭附近河道阀门及开发区河道入江阀

门,并采用工程措施构筑堤坝,确保污染物不进入长江。

通过设置可靠的初期雨水和事故**皮水**收集系统,确保事故状态下污染物质不通过排水系统进入地表水体,可有效防止因突发**水**而引起的地表水体污染,将建设项目水环境风险降低到可接受水平。

3、消防及火灾报警系统及消防废水处置

企业应设有若干水量的烟感、温感及手动火灾报警器,分布在全厂各个部位,包括办公楼、消防泵房、研发车间和仓库。

本项目,为用水为厂内消防水池;全厂区配备必要的消防设施,包括消火栓、手提灭火器、消防泵 至外消防给水管网按环状布置,管网上设置室外地上式消火栓,消火栓旁设置钢制消**体**数。

下 雨水和污水接管口分别设置截流阀,发生泄漏事故时,泄漏物、消防水流入雨水收集系统,紧急关闭截流阀,打开事故池阀门,可将泄漏物、消防水截流在厂区内,事故废水经过污水处理设施处理达标后接入园区污水管网,若厂内污水处理装置不能处理事故废水,必须委托有资质的单位安全处置,杜绝以任何形式直接进入园区的污水管网、雨水管网。

其他风险防范措施如下:

- (1)中试装置区、甲类仓库设有气体泄漏报警装置,发生易燃气体泄漏时可及时报警,厂区 控制楼设有自动化远程切断系统。
 - (2)中试过程和场所可通过视频、定时的巡回检查进行监控。
- (3)设有安全环保部,根据生产情况,安排人员对研发区、储存区进行定期巡查,确保将股大灾在萌芽状态。
 (4)生产过程采用 DCS 和 SIS 系统控制,生产过程发生异常可及时报警。
 4、依托所在园区三级防范体系 情扑灭在萌芽状态。

本项目位于中国精细化工(泰兴)发展园区内。园区已建立党 雨水(初、后期)事故消防废水等切换、排放系统,园区建立企业流 ***** 让事故污水向环境转移。 雨水防控体系及敏感目标入江河道防控体系三级环境风险防控

- (1)一级防控-企业防控体系
- ①企业在装置区设置低矮围堰(中试基地无罐区布设 区内雨水、污水管网分别设置 截止阀。厂内设置应急事故池。发生事故时紧急关闭意流阀,生产装置区、公辅工程等的事故 污水、泄漏物料、消防废水等可在围堰、应急事成地内暂存,防止事故产生的有毒有害物质泄 漏进入环境。
- ②当事故性污水超过污水处理场贮存的处理能力时,及时用应急泵或管道自流方式将污水 送入厂区事故池内暂时贮存,再送**送水处理站处理。
- 致监控,并与园区信息平台联网,超标废水自动打回企业废 ③企业雨水、污水排口设置 水处理装置处理。
 - (2)二级防控-园区

园区内部及周边的河流水系均设有闸门,闸门常处关闭状态。园区内建设截污井、雨洪径 流排放口安徽上阀,并建立有公共应急事故池,事故发生时可将污水和危化品等泄漏物截留 区水水水系中或排入园区公共应急事故池中,以免其污染扩散至园区外地表水体。园区在 台河区域设有应急物资库,配备应急物资,在发生水污染事故时可及时处理。

同时,开发区建设有 4 个 1 万 m³ 的事故应急池,其中距离本项目最近的为 4#泵站及 4# 一旦事故废水出厂,可直接通过泵站将事故废水导排至园区 4#事故池。

- (3)三级防控-入江河道防控体系
- ①园区已在团结河、通江河、丰产河、段港河、区内河、洋思港等6条河道的6个闸站建 设动力回流装置系统,以实现事故状态的截污回流,防止事故状态下水污染物直接进入长江。

②园区已建立专业环境应急救援队伍、配备相关应急物资。定期开展环境应急演练,并会 同园区内企业开展联合演练。

③园区编制突发环境应急预案,根据园区内部企业发生的事件影响程度、范围,制定了分 级响应机制,明确了应急处置流程、步骤、责任人,以便有效、及时的开展环境应急处置工作。

开发区三级防范体系示意图见图 7.7-2, 开发区三级防控体系建设-

7.7.2.5. 地下水环境风险防

采取源头控制和分区防渗措施,加强地下水环境的监控、预警, 具体事故应急减缓免施见地下水污染防治措施章节。

方范措施 7.7.2.6. 安

漏事故的防范措施

故的预防是中试和储运过程中最重要的环节,发生泄漏事故可能引起一系列重大事 表明:设备失灵和人为的操作失误是引发泄漏的主要原因。因此选用较好的设备、精 、认真的管理和操作人员的责任心是减少泄漏事故的关键。本项目主要采取以下物料泄 漏事故的预防:

在有易燃易爆物料可能泄漏的区域安装可燃气体探查仪,以便及早发现泄漏、及早处理;

经常检查管道,地上管道应防止汽车碰撞,并控制管道支撑的磨损。定期系统试压、定期 检漏;

事故发生时,应立即疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,建议应急 处理人员佩戴自给式呼吸器,穿化学防护服。不要直接接触泄漏物,在确保安全情况下堵漏。 用大量水冲洗,经稀释的洗水放入废水系统。如大量泄漏,利用围堤收容,然后收集、转移回收或无害处理后废弃。

2、火灾事故的防范措施

本项目涉及危化品主要包括丙酮、N,N-二甲基甲酰胺、甲基丙烯酸甲酯 水、乙二胺、甲醇、盐酸、硫酸、硝酸、甲苯、氯化氢、溴化氢、 异丙醇及危险库里的废液等,根据相关经验,企业采取的防火防

- (1)控制与消除火源
- ②动火必须按动火手续办理动火证,采取有效的防**运**术。 ③使用防爆型电器。 ④严禁钢制工具敲打、撞击、抛掷。 ⑤安装避雷进罗

- ⑤安装避雷装置。
- ⑥转动设备部位要保持清洁,防山
- 用专用的设备运输物料。 ⑦要求专业目有资质的运输单
- (2)严格控制设备质量与安装
- ①容器、泵、管线等设备及其配套仪表选用合格产品。
- ②管道等有关设施拉按要求进行试压。
- 泵等定期检查、保养、维修。
- 定期进行检查、维修、保养。
- 管理、严格纪律
- 守各项规章制度和操作规程,严格执行岗位责任制。
- ②坚持巡回检查,发现问题及时处理。
- ③检修时,做好隔离后,要有现场监护,在通风良好的条件下方能动火。
- ④加强培训、教育和考核工作。
- (4)安全措施
- ①消防设施要保持完好。

- ②易燃易爆场所安装可燃气体检测报警装置。
- ③要正确佩戴相应的劳防用品和正确使用防毒过滤器等防护用具。
- ④搬运时轻装轻卸,防止包装破损。
- ⑤厂区要设有卫生冲洗设施。
- ⑥采取必要的防静电措施。
- (5)应急措施

由于发生火灾时一般是消防人员执行灭火任务,环保人员很难进入现场。如果消防人员缺乏应对突发环境事件的专业知识,在救援行动过程中因处置不当可能会造成新的污染,甚至扩大污染程度,造成不必要的损失。最早发现者应立即向公司应急指挥部值现代整,并立即采取一切办法,切断事故源。在应急人员到来之前,要设法控制火势,根据现场的条件,可用附近的消防设备进行灭火,或者关断和隔离火区。事故目击者必须做到产量使自己保持冷静,确定一定逃生路径,如果可能的话,营救受困人员/受伤人员。如果有条件,可以进行搜寻。

- ①灭火注意事项
- a.灭火人员不应单独灭火;
- b.出口应始终保持清洁和**或**道:
- c.要选择正确的灭火剂
- d.灭火时还应考成 员的安全。
- ②灭火对策
- a.扑救衣状灾,迅速转移断火灾部位四周的化学品,切断进入火灾事故地点的一切物料; 在火灾状态扩大到不可控制之前,应使用移动式灭火器,或现场其它各种消防设备、器材扑灭 初期、灾和控制火源。
- b.采取保护措施:为防止火灾危及相邻设施,迅速疏散受火势威胁的物资;有的火灾可能造成易燃液体外流,这时可用沙袋或其他材料筑堤拦截飘散流淌的液体或挖沟导流将物料导向安全地点;
- c.用毛毡、海草帘堵住下水井、雨水口等处,防止火焰蔓延。待专业消防队到达后,介绍 物料性质,全力配合扑救。

③毒害品、腐蚀品火灾扑救的基本措施

毒害品和腐蚀品对人体都有一定危害。毒害品主要经口或吸入蒸气或通过皮肤接触引起人体中毒的。腐蚀品是通过皮肤接触使人体形成化学灼伤。毒害品、腐蚀品有的本身能着火,有的本身并不着火,但与其他可燃物品接触后能着火。

这类物品发生火灾一般采取以下基本对策。灭火人员必须穿防护服,佩戴防护面具。一般情况下采取全身防护即可,对有特殊要求的物品火灾,应使用专用防护服。考虑到过滤式依靠面具防毒范围的局限性,在扑救毒害品火灾时应尽量使用隔绝式氧气或空气面罩。为了在火场上能正确使用和适应,平时应进行严格的适应性训练。积极抢救受伤和被困人员。限制燃烧范围。毒害品、腐蚀性火灾极易造成人员伤亡,灭火人员在采取防护措施后,发生即投入寻找和抢救受伤、被困人员的工作。并努力限制燃烧范围。扑救时应尽量使用加强水流或雾状水,避免腐蚀品、毒害品溅出。遇酸类或碱类腐蚀品最好调制相应的中和流解释中和。遇毒害品、腐蚀品容器泄漏,在扑灭火势后应采取堵漏措施。腐蚀品需用防冷材料堵漏。

- 3、电气、电讯安全防范措施
- (1)火灾的控制
- ①中试车间严禁烟火,禁止带入火种,禁止发射钉的皮鞋,杜绝跑、冒、滴、漏,动火必须严格按照动火程序办理动火证,并采取有效。范措施,使用不产生火花的工具,严禁钢质工具敲打、撞击、抛掷。
- ②对设备、仪表进行不定期检验、保养和维修,确保设备处于完好状态;加强特种设备的管理,严格按规程操作,每处实期检查,凭使用证使用,设备装置的安全附件要完好、有效并定期检验,如液压计、压火发、泄压装置、报警装置等。
 - ③加强设备、管**发**气密性检查,减少泄漏发生的可能性,防止有害气体外溢。
- ④按规范安装 化器线路,并要不定期检查、保养、维修,确保电器线路处于完好状态,各种避雷装置 《须定期检测。
 - ⑤抗凝门卫管理,进出车辆要带好阻火器,正确行驶,避免事故和车祸。
 - 制定事故应急救援预案,报上级有关部门备案,并定期组织演练。
 - (2)电气控制
 - ①电气设备全部实行保护接地或接零。
 - ②使用低压行灯应有绝缘手柄和金属防护罩,在主厂房内均应选用防爆低压行灯。
- ③采取有效的防静电措施,各种易燃液体的贮存容器均需接地,输送管道连成一体并接地。接地电阻不超过 100 欧。

- ④本项目应设有防直击雷、防雷电感应和防雷电波侵入的措施。主要有:装设避雷针,接地装置单设,接地电阻不超过4欧,对厂房内的金属设备、管道和结构钢筋等给予接地。
 - (3)腐蚀性有毒物品的防护措施

呼吸系统防护:可能接触其蒸气时应该佩戴防毒口罩。必要时佩戴防毒面具。

眼睛防护: 戴化学安全防护眼镜。

防护服:穿工作服(防腐材料制作)。

手防护: 戴橡皮手套。

其它:工作后,淋浴更衣。单独存放被毒物污染的衣服,洗后再用。保持良好的卫生习惯

4、强化安全生产管理

在管理上设置专业安全卫生监督机构,建立严格的规章制度和安全生产措施,所有工作人员必须培训上岗,绝不容许引入不安全因素到生产作业中去。

加强监测,杜绝意外泄漏事故造成的危害。在厂区布置有一有害、可燃气体探测器,进行不间断检测,防止物料的泄漏。

采用密封性能良好的阀门、泵等设备和配件,在防水区域内使用的电气等设备,均需采用相应防爆等级的防爆产品。

贯彻执行密闭和自动控制原则,在输送处物品过程中均采用自动控制和闭路电视进行巡视控制。遵守安全操作规程,严禁在中域、置区明火作业,需要采用电焊作业,需上报主管部门,并做好相应的防护措施。

生产区设禁止吸烟标志, 连九入为吸烟引起明火火灾等事故。物料输送管均需设有防静电装置。

同时,在具有爆炸。险的区域内,所有的电气设备均采用防爆型设备,设备和管道设有防雷防静电接地设施,汽车运输车设有链条接地;落实现场人员的劳动保护措施;严格执行有关的操作运行规制度,在各岗位设置警示标牌。

在被失设计完成后,有关单位要从安全生产的角度对项目的总体设计进行全面的审查。

7.72. 危险废物污染事件应急措施

本项目运营过程中有危险废物产生,厂区危险废物的储存和管理应采取以下风险防范措施:

①厂区内危险废物暂存场地必须严格按照《危险废物收集 贮存 运输技术规范》(HJ2025-2012)、《危险废物贮存污染控制标准》(GB18597-2023)及《江苏省固体废物全过程环境监管工作意见》(苏环办〔2024〕16 号)的要求设置和管理;

- ②建立危险废物台账管理制度,跟踪记录危险废物在公司内部运转的整个流程,与生产记录相结合,建立危险废物台账;
- ③对危险废物的容器和包装物以及收集、贮存、运输、处置危险废物的设施、场所,必须设置危险废物识别标志;
- ④禁止将性质不相容而未经安全性处置的危险废物混合收集、贮存、运输、处置,禁止货 危险废物混入非危险废物中贮存、处置;
- ⑤必须定期对所贮存的危险废物包装容器及贮存设施进行检查,发现破损,应及时采取措施清理更换;
 - ⑥运输危险废物必须根据废物特性,采用符合相应标准的包装物、容器 运输工具;
- ⑦收集、贮存、运输、处置危险废物的场所、设施、设备、容器、**被**表物及其他物品转作 他用时,必须经过消除污染的处理,并经检测合格。

危废库采取全封闭结构,且仓库内设有导流沟,当日常巡逻、员发现危废库内危险废物发生泄漏时,立即上报并开展救援行动,在不干扰其他危险资助的条件下清理危险废物。当固体废物泄漏时,救援人员成员在做好个人防护措施的基础上对废政进行收集,并转移至包装桶中,对泄漏的包装桶进行封堵,将泄漏的物料全部引流至收集。应急救援行动结束后,对现场进行全面清理,直至无害化。

当生产车间废液发生泄漏时, 为人员立即上报, 开展救援行动。在做好个人防护措施的基础上利用消防袋构筑临时围爆, 将泄漏的废液全部截留在临时围堰内, 然后用活性炭、黄沙、吸附垫等进行吸附。吸附, 发后物料全部转移至危险废物仓库内进行暂存。

当危险废物在从**发生**装置区转移至危废仓库的道路上发生泄漏时,立即通知污染控制组,接到通知后污染控制组立即开展救援行动。

当废活烧发等固体废物泄漏时,救援人员成员在做好个人防护措施的基础上进行重新包装,然后转移之危废库,当废液泄漏时,救援人员在做好个人防护措施的基础上利用消防袋、黄沙等大场临时围堰,截流泄漏的废液,尽可能的控制危险废物扩散的范围,然后用防爆泵转移至条集桶内,然后运至危废库。

全面清洗危险废物泄漏处,冲洗废水全部沿道路两侧雨水管网进入事故水池。

7.7.2.8. 次生、伴生风险防范措施

发生火灾爆炸时产生次生/伴生事故为易燃化学物质的火灾爆炸,燃烧产物主要为一氧化碳、氰化氢等。

发生火灾爆炸时,容器内可燃液体泄出后而引起火灾,同时容器中大量液体或气体向外环境溢出或散发。其可能产生的次生污染为火灾消防液、消防土及燃烧废气。

发生火灾后,首先要进行灭火,降低着火时间,减少燃烧产物对环境空气造成的影响;事故救援过程中产生的喷淋废水和消防废水应引入厂内事故池暂时收集,然后分批进入污水收集池达到接管标准后出厂;其它废灭火剂、拦截、堵漏材料等在事故排放后统一收集送有资质单位进行处理。

为避免事故状况下泄漏的有毒物质以及火灾爆炸期间消防污水污染水环境,企业必须制定严格的规章制度,确保事故废水不会排出厂外。

7.7.3. 环境应急管理制度

基本要求:中试孵化产业园和入驻企业必须且应独立编制环境风险好估报告和突发环境事故应急预案,配备必要的风险防控装备、器材和物资,同时中试孵化产业园及入驻企业应加强与泰兴经济开发区"三级防控"体系的衔接和突发环境事件的联系响应。

本次依据《江苏省环境影响评价文件环境应急相关上海制要点》(苏环办〔2022〕338 号)对中试基地制定相关的环境应急管理制度,具体为:

7.7.3.1. 突发环境事件应急预案编制、修订及备案要求

按照《企业事业单位突发环境事件应急**次** 备案管理办法(试行)》(环发〔2015〕4号)、《企事业单位和工业园区突发环境事件及急预案编制编制导则》(DB32/T3795-2020)等文件要求,建设单位应开展环境风险评论 编制应急预案,并报送环保主管部门备案。

根据本项目环境风险分析的结果,对于项目可能造成环境风险的突发性事故制定应急预案纲要,应急预案纲要具体的表见表 7.7-1。

序号 项目 内容及要求 明确编制目的、编制依据、适用范围、预案体系与分级、工作原则等。 1 明确环境应急组织机构体系、人员及应急工作职责,辅以图、表形式表示。应急组织机构人员应覆 盖各相关部门,能力不足时可聘请外部专家或第三方机构。 明确对环境风险源监控的方式、方法以及采取的预防措施。结合事件危害程度、紧急程度和发展态 势,说明预警信息的获得途径、分析研判的方式方法,明确预警级别、预警发布与解除、预警措施 包括信息报告程序、信息报告内容及方式。信息报告程序包括内部报告、信息上报、信息通报,明 信息报告 确联络方式、责任人、时限、程序和内容等。信息报告内容及方式应明确不同阶段信息报告的内容 与方式,可根据突发环境事件情况分为初报、续报和处理结果报告。 制定不同突发环境事件情景下的环境应急监测方案。若企事业单位自身监测能力不足,应依托外部 环境应急监测 有资质的监测(检测)单位并签订环境应急监测协议。 明确突发环境事件发生后,各应急组织机构应当采取的具体行动措施,包括响应分级、应急启动、 环境应急响应 应急处置等程序。 应急终止 明确应急终止的条件、程序和责任人,说明应急状态终止后,开展跟踪环境监测和评估工作的方案。 7 应明确现场污染物的后续处置措施以及环境应急相关设施、设备、场所的维护措施,开展事件调查 事后恢复 8

表 7.7-1 应急预案纲要内容

		和总结。				
9	保障措施	根据环境应急工作需求确定相关保障措施,包括经费保障、制度保障、应急物资装备保障、应急队 伍保障、通信与信息保障等。				
10	预案管理	明确环境应急预案培训、演练、评估修订等要求。				
11		a) 涉及部门、机构或人员的联系方式(含应急联系方式); b) 应急信息接报、处理、上报等规范化格式文本; c) 其他相关材料。				

本项目在投产前应编制突发环境事件应急预案,并进行备案。企业应结合环境应急预案实施情况,至少每三年对环境应急预案进行一次回顾性评估。

7.7.3.2. 应急监测

当发生较大污染事故时,为及时有效地了解本企业事故对外界环境的影响,使一上级部门的指挥和调度,公司需进行环境监测,直至污染消除。

根据事故类型和事故大小,确定监测点布置,从发生事故开始,直上污染影响消除,方可解除监测。具体监测方案如下:

1、大气环境监测

(1)监测因子: 非甲烷总烃、颗粒物、氟化氢、氯化氢 氧化硫、硫酸雾、甲苯、氯气、 氮氧化物、氨、甲醇、丙酮、乙腈、乙酸乙酯、硫化氢 (根据事故具体情况,可适当增减)。

(2)监测时间和频次:按照事故持续时间决定设测时间,根据事故严重性决定监测频次。一般情况下每小时监测 1 次,随事故控制减弱交流当减少监测频次。

(3)监测布点:按事故发生时的主导风角的下风向,考虑区域功能设置1个监测点,厂界设监控点。

2、水环境监测

在发生水污染事故后、必即在污染事故排放口处设一个监测点位,监测项目为 pH、COD、SS、氨氮、总氮、总氮、动植物油、石油类、氟化物、氯化物、AOX、全盐量等(根据事故具体情况,可适当的减),事故期间每小时监测 1 次,事故后根据影响程度进行适当的环境监测。

上述,例内容若企业不具备监测条件,需委托环境监测机构监测,监测结果以报告书形式上报的地环保部门。生态环境局应对企业环境管理及监测的具体情况加以监督。

排污单位自行监测信息公开内容及方式按照《企业环境信息依法披露管理办法》(部令第 24号)或地方环境保护主管部门确定的公开要求执行。

7.7.3.3. 应急物资装备要求

本项目建成后需按照《危险化学品单位应急救援物资配备标准》(GB30077-2019)中的要求配备应急救援物资。

1、配备原则

(1)危险化学品单位应急救援物资应根据本单位危险化学品的种类、数量和危险化学品发生 事故的特点进行配置。

(②应急救援物资应符合实用性、功能性、安全性、耐用性以及单位实际需要的原则,应满								
足单位	足单位员工现场应急处置和企业应急救援队伍所承担救援任务的需要。								
2	2、作业场所配备要求								
₹	生危险化学品单位	工作业场所 ,应急救援物资应 ²	存放在应急救援器	材专用柜或指定地点。作					
业场月	听应急物资配备标	斥准应符合下表的要求。		**					
		表 7.7-2 应急物资	资配备标准						
序号	物资名称	技术要求或功能要求	配备	A 注					
1	正压式空气呼吸器	技术性能符合 GB/T 18664 要求	2套	/					
2	化学防护服	技术性能符合 AQ/T 6107 要求	2套	作有有毒腐蚀液体危险化学品的 作业场所					
3	过滤式防毒面具	技术性能符合 GB/T 18664 要求	1 /	根据有毒有害物质考虑,根据当 班人数确定					
4	气体浓度检测仪	检测气体浓度	(A)¥'	根据作业场所的气体确定					
5	手电筒	易燃易爆场所,防爆		根据当班人数确定					
6	对讲机	易燃易爆场所,防爆	2 台	根据作业场所选择防护类型					
7	急救箱或急救包	物资清单可参考 GBZ 1	1包						
8	吸附材料	吸附泄漏的化学品	根据实际需要配置	以工作介质理化性质确定具体的 物资,常用吸附材料为沙土					
9	洗消设施或清洗剂	吸附泄漏的化	根据实际需要配置	在工作地点配备					
10	应急处置工具箱	工作箱内配备常用工具或专业处置	根据实际需要配置	根据作业场所具体情况确定					

应急救援队伍可使用作业场质量急救援物资作为抢险救援物资。

境事件隐患排查和治理工作指南》要求,建立并完善隐患排查治 和技术人员,建立健全隐患排查治理制度,开展隐患排查治理工作和 企业应从环境应急管理和突发环境事件风险防控措施两大方面排查可能直接导 件的隐患。通过自查、自报、自改、自验的形式实施隐患排查治理工作, 训和演练,建立隐患排查治理档案。

表 7.7-3 企业突发环境事件应急管理隐患排查内容

	排查内容	具体排查内容
1 日 不 -	1 目不协师台工品家华女	(1) 是否编制突发环境事件风险评估报告,并与预案一起备案。
	1.是否按规定开展突发环	1(2)企业地有奚发场境事件风险物质种类和风险评估报告相比是否发生变化。
境事件风险评估,确定风 险等级	(3) 企业现有突发环境事件风险物质数量和风险评估报告相比是否发生变化。	
	四守级	(4) 企业突发环境事件风险物质种类、数量变化是否影响风险等级。

	(5) 突发环境事件风险等级确定是否正确合理。
	(6) 突发环境事件风险评估是否通过评审。
	(7) 是否按要求对预案进行评审,评审意见是否及时落实。
	(8) 是否将预案进行了备案,是否每三年进行回顾性评估。
	(9) 出现下列情况预案是否进行了及时修订。
	①面临的突发环境事件风险发生重大变化,需要重新进行风险评估;
2.是否按规定制定突发环	②应急管理组织指挥体系与职责发生重大变化;
境事件应急预案并备案	③环境应急监测预警机制发生重大变化,报告联络信息及机制发生重大变化
	④环境应急应对流程体系和措施发生重大变化;
	⑤环境应急保障措施及保障体系发生重大变化;
	⑥重要应急资源发生重大变化;
	⑦在突发环境事件实际应对和应急演练中发现问题,需要对环境 预案作出重力
	调整的。
	(10) 是否建立隐患排查治理责任制。
3.是否按规定建立健全隐	(11) 是否制定本单位的隐患分级规定。
患排查治理制度,开展隐	(12) 是否有隐患排查治理年度计划。
患排查治理工作和建立	(13) 是否建立隐患记录报告制度,是否制定是排查表。
档案	(14) 重大隐患是否制定治理方案。
	(15) 是否建立重大隐患督办制度。
	(16) 是否建立隐患排查治理档案
1.是否按规定开展突发环	
竟事件应急培训,如实记	- HIV
录培训情况	(19) 是否健全培训档案、如实记录培训时间、内容、人员等情况。
	(20) 是否按规定配金足以应对预设事件情景的环境应急装备和物资。
5.是否按规定储备必要的	(21) 是否已设置于职或兼职人员组成的应急救援队伍。
环境应急装备和物资	(22) 是否大量也组织或单位签订应急救援协议或互救协议。
	(23)是近对现有物资进行定期检查,对已消耗或耗损的物资装备进行及时补充
5.是否按规定公开突发环	(3)
境事件应急预案及演练	[文
情况	後 「 長 7.7-4 企业突发环境事件风险防控措施隐患排查内容
₩ 本米 園	区 1.1-4 企业犬及环境事件风险的经捐施隐忠排查内容 具体排查内容
排查	
	○ 交积是否满足环评文件及批复等相关文件要求。

排查类别	具体排査内容
- X	是否设置应急池。
中间事故	2.应急池容积是否满足环评文件及批复等相关文件要求。
冲设施 事故	3.应急池在非事故状态下需占用时,是否符合相关要求,并设有在事故时可以紧急排空的技
~ .>.	术措施。
本 並 お を が 池 が で が れ で の に 。 に る に 。 に に 。 に	4.应急池位置是否合理,消防水和泄漏物是否能自流进入应急池;如消防水和泄漏物不能自
〇(以下统称	流进入应急池,是否配备有足够能力的排水管和泵,确保泄漏物和消防水能够全部收集。
应急池)	5.接纳消防水的排水系统是否具有接纳最大消防水量的能力,是否设有防止消防水和泄漏物排出厂外的措施。
	6.是否通过厂区内部管线或协议单位,将所收集的废(污)水送至污水处理设施处理。
 厂内排水系	7.装置区围堰、罐区防火堤外是否设置排水切换阀,正常情况下通向雨水系统的阀门是否关
/ rankuv	闭,通向应急池或污水处理系统的阀门是否打开。

 统	8.所有生产装置、罐区、油品及化学原料装卸台、作业场所和危险废物贮存设施(场所)的
	墙壁、地面冲洗水和受污染的雨水(初期雨水)、消防水,是否都能排入生产废水系统或独
	立的处理系统。
	9.是否有防止受污染的冷却水、雨水进入雨水系统的措施,受污染的冷却水是否都能排入生
	产废水系统或独立的处理系统。
	10.各种装卸区(包括厂区码头、铁路、公路)产生的事故液、作业面污水是否设置污水和事
	故液收集系统,是否有防止事故液、作业面污水进入雨水系统或水域的措施。
	11.有排洪沟(排洪涵洞)或河道穿过厂区时,排洪沟(排洪涵洞)是否与渗漏观察井、生 剂 。
	废水、清净下水排放管道连通。
雨水、清下水	12.雨水、清净下水、排洪沟的厂区总排口是否设置监视及关闭闸(阀),是否设专 发发在
和汚(废)水	「緊急情况下关闭总排口,确保受污染的雨水、消防水和泄漏物等排出厂界。
的总排口	13.污(废)水的排水总出口是否设置监视及关闭闸(阀),是否设专人负责关键总排口,确
	保不合格废水、受污染的消防水和泄漏物等不会排出厂界。
	14.企业与周边重要环境风险受体的各种防护距离是否符合环境影响评价。
突发大气环	15.涉有毒有害大气污染物名录的企业是否在厂界建设针对有毒有害。物的环境风险预警
境事件风险	体系。
	16.涉有毒有害大气污染物名录的企业是否定期监测或委托监测。
防控措施	17.突发环境事件信息通报机制建立情况,是否能在突发环境事件发生后及时通报可能受到污
	染危害的单位和居民。

2、隐患排查方式

根据排查频次、排查规模、排查项目不同,排查可分综合排查、日常排查、专项排查及抽查等方式。企业应建立以日常排查为主的隐患排化工作机制,及时发现并治理隐患。

综合排查:以厂区为单位开展全面排查;

日常排查:以中试单元、实验室等为**产**,组织对单个或几个项目采取日常的、巡视性的排查;

专项排查:是在特定时间或数特定区域、设备、措施进行的专门性排查。

综合排查每年不少大次;日常排查每月不少于一次;专项排查,其频次根据实际需要确定,建议每年不少大次;抽查建议每年一次。

本项目与《产生态环境厅关于加强全省环境应急工作的意见》(苏环发〔2021〕5号)相符件分析

表 7.7-5 中试基地与苏环发(2021) 5 号相符性分析

苏环发〔2021〕5号要求

中试基地情况

相符性

(七)加强环境风险源头管控。建立环境应急部门参与规11、环评报告中明确了建立隐患排查治 划环评和重点建设项目审查制度,在环评报告及批复中明理制度、并明确项目在投产前应及时修 确建立隐患排查治理制度、制定应急预案并备案等应急管门全厂突发环境事件应急预案,并进行 理规定,以及风险防控措施、隐患排查频次、培训演练等格案,同时明确了风险防控措施、隐患 具体实施要求。规划环评着重对"企业一公共管网(应急池)排查频次、培训演练等具体实施要求。 一区内水体"突发环境事件三级防控体系、监测预警等基础2、环评报告中明确了应急池、雨排管 设施建设内容进行审查;建设项目环评着重对应急池、雨路闸阀等风险防控设施的建设内容进 排管路闸阀等风险防控设施建设内容进行审查。

行了明确。

7.7.3.5. 环境应急培训和演练

- 1、环境应急预案培训
- (1)应急组织机构的培训

邀请应急救援专家,就中试基地突发环境事故的指挥、决策

采取的方式:综合讨论、专家讲座等。

培训时间:每年1-2次。

(2)应急救援队伍的培训

对基地应急救援队伍的队员进行应急救护

- ①培训主要内容
- a、了解、掌握事故应急救援预案 熟悉使用各类防护器具; c、如何开展事故现 场抢救、救援及事故处置; d、事故 自我防护及监护措施。
 - 《合讨论、现场讲解、模拟事故发生等。

针对应急救援 基本要求,系统培训厂内工作人员,发生各级事故时报警、紧急处置、逃 紧急疏散等程序的基本要求。

 Ξ 安全生产规章制度、安全操作规程: b、防火、防爆、防毒的基本知识: c、厂内 况的排除、处理方法;d、事故发生后如何开展自救和互救;e、事故发生后的撤离和疏

- ②采取的方式:课堂教学、综合讨论、现场讲解等。
- ③培训时间:每半年不少于4小时。
- 2、环境应急演练

演练内容:(1)通信及报警信号的联络;(2)急救及医疗;(3)消毒及洗消处理;(4)防护指导, 包括专业人员的个人防护及员工的自我防护;(5)各种标志、设置警戒范围及人员控制;(6)物料 泄漏的应急处置措施,包括应急器材的正确使用方法;(7)向上级报告情况;(8)事故的善后工作。

中找到改进的措施,对事故应急预案进行修正,以完善事故应急预案。

发环境事件应急知识和技能培训,并建立培训档案,如实记录培训 考核结果等信息。

在演练实施过程中,安排专门人员,采用文字、照片、 束后应将演练计划、演练方案、演练评估报告、演练总

中试基地应急疏散路线及应急物资分布详见图

7.7.3.6. 环境风险防范设施及环境应急处置卡标心标牌

本项目需编制突发环境事件应急预案, ****应按《突发环境事件应急预案》中要求设置厂 **在**和应急处置程序等信息并按相关要求完善厂区风险 区环境应急处置卡等标志标牌,明确责 防范措施。

急预案管理办法》要求,单位环境应急预案附件包括"一图 根据《江苏省突发环境事件 **冬**张图",环境风险辨识、环境风险防范措施"两个清单",环境 安全职责承诺、应急处置措施"两张卡"。其中"一张图"应至少包括环境风险源平面分布、 《受体分布、雨污水收集排放管网、应急救援组织信息、应急物资装备信息

教育和信息风险事故应急预案纲要

员目应参照《国家突发公共事件总体应急预案》、《国家突发环境事件应急预案》、《江 突发公共事件总体应急预案》和《企事业单位和工业园区突发环境事件应急预案编制导则》 (DB32/T 3795/2020) 等相关文件的精神和要求完善企业应急体系,项目建成后按照实际情况 编制突发环境事件应急预案。

7.7.4. 环保设备设施安全风险评估

结合《关于进一步加强环保设备设施安全生产工作的通知》(安委办明电〔2022〕17号)、《关于做好生态环境和应急管理部门联动工作的意见》(苏环办〔2020〕101号),企业应深刻吸取近期环保设备设施典型事故教训,进一步加强环保设备设施安全生产工作,坚决防范遏制重特大事故发生。

基地应重点关注污水处理站、RTO 装置、活性炭吸附装置等重点环保设备设施,按照相关法律法规和技术标准规范要求,开展环保设备设施安全风险辨识评估和隐患排查治理,落实安全生产各项责任措施。

中试基地主要负责人严格履行第一责任人责任,将环保设备设施安全作业业安全管理的重要组成部分,全面负责落实基地内的环保设备设施安全生产工作。严格客实涉环保设备设施新、改、扩建项目环保和安全"三同时"有关要求,委托有资质的资产单位进行正规设计,在选用污染防治技术时要充分考虑安全因素;在环保设备设施改造。对涉环保设备设施相关岗位人按要求设置安全监测监控系统和联锁保护装置,做好安全。对涉环保设备设施相关岗位人员进行操作规程、风险管控、应急处置、典型事故警示。专项安全培训教育。开展环保设备设施安全风险辨识评估,系统排查隐患,依法建立局基整改台账,明确整改责任人、措施、资金、时限和应急救援预案,及时消除隐患。认真或相关技术标准规范,严格执行吊装、动火、高处等危险作业审批制度,加强有限空间、允维修作业安全管理,采取有效隔离措施,实施现场安全监护和科学施救。对受委托开发证保设备设施建设、运营和检维修第三方的安全生产工作进行统一协调、管理,定期进行安全检查,发现安全问题的,及时督促整改。

7.7.4.1. 环境治理设施安全状验辨识

根据《关于做好》。环境和应急管理部门联动工作的意见》(苏环办〔2020〕101号),企业要对脱硫脱碳、煤改气、挥发性有机物回收、污水处理、粉尘治理、RTO 焚烧炉等六类环境治理设施、展安全风险辨识管控。本项目主要涉及挥发性有机物回收、RTO 焚烧炉、污水处理或、粉尘治理四类,安全风险辨识如下:

*废气治理设施

废气收集处理采取的安全风险防范措施:

(1)废气收集系统有发生泄漏、火灾、爆炸事故的可能,废气管道与不同装置气相连通,若控制与隔断措施缺乏,一个气相连通管线发生事故,可能导致火灾、爆炸事故扩大,波及周邻管线,甚至引发灾难性事故。所以没有安全控制和隔断设施的气相连通系统,其装置本质安全度低,本质安全性能不能满足安全生产需要。综上所述,没有安全控制和隔断设施的废气收集治理系统具有潜在的安全风险。

(2)活性炭吸附装置由于人员误操作、设备缺陷、外力因素等发生设备故障,易发生**火**灾等 事故。

(3)活性炭吸附装置挥发性有机物浓度达到一定比例遇明火易发生火灾

(4)本项目尾气中涉及的物料有非甲烷总烃等易燃物料,尾气如果发力泄漏遇火源或热源有发生火灾、爆炸的危险。尾气处理系统在进行检维修操作时,如果是大处理装置中的尾气未排干净或未彻底置换干净,在进行动火、切割作业时火花有可能是足气处理系统中的尾气发生爆炸、火灾事故。

(5)活性炭属于可燃固体,在活性炭更换过程中、各类到火源或热源则有发生火灾的可能。

(6)RTO 焚烧炉若发生故障,可能导致火灾、**爆炸**事故发生。

2、废水处理设施

中试基地产生的综合废水经基地污水处理站处理后接管开发区工业污水处理厂集中处理,若污水处理池等未完全盖实或作业水质未经允许私自打开且未设置警示标志、防护护栏,人员作业时视线受阻,未佩戴牵引绳、安全帽等安全设施进入发生淹溺、中毒和窒息、高处坠落等事故: 当进水有毒气体浓水流高,容易使人中毒身亡等。

3、固废

- (1)废液存放区域,通风不良,遇热源有可能发生火灾事故。
- (2)废液、行单独收集和分类存放,将不相容的、相互作用会发生剧烈反应的化学品混放, 易造成系列反应放出有毒、易燃气体发生火灾或窒息事故。

一个有些试剂会破坏人体免疫系统,造成人体机能失调,使人致畸、致癌、致突变。化学试验多具易燃性,遇到火源极易起火燃烧,引发火灾。有机溶剂具有较强的挥发性,挥发出来的蒸气可以飘移到较远的地方,如果接触到火种,顺着蒸气燃烧,会导致液体着火。

(4)废活性炭为可燃物质,若遇明火等,可能导致火灾事故的发生。

固废收集暂存应采取的安全风险防范措施:

- ①企业应建立固废安全管理制度,危险废物应妥善收集并及时转移至持有危险废物处置许可证的单位进行处置。危险废物运输过程中应按照有关规范、要求进行包装。
- ②本项目危废库必须按规定设置警示标志,并设置专人严格管理;应满足分类暂存,存放在固定的密封容器中,并设置危废标识;危废出入库需建立危废产生、出入库和转移管理。
 - ③危废库产生的废气经管道接入活性炭吸附装置后通过排气筒排入大气。
- ④危险废物必须按《危险废物贮存污染控制标准》(GB18597-2023)、《危险废物收集、贮存、运输技术规范》(HJ2025-2012)妥善存放,并及时委托有资质单位处置。

7.7.4.2. 环境治理设施安全风险管控措施

1、风险分析和评价结果、应对措施

中试基地及入驻企业应根据安全风险相关要求进行风险评价,入驻(1) 负责人对自身项目的风险评价结果进行评审,并提交安全环保部会签意见,管理者代表批准后确定。

风险控制措施的确定及效果评价:

- (1)根据风险分析和评价的结果,策划并确定风险控制。他,控制措施应分为保持现有控制措施、新增或改进控制措施;当风险单元在一般(黄色)、较大(橙色)风险及以上时,应根据风险特性及风险控制现状,制定相应的新增或或进措施;
- (2)风险控制措施的策划,应基于以下顺文消除、替代、工程控制等技术措施,标识、警告和(或)其他管理控制措施,个体防护措施,并符合法规、国家标准和行业标准的要求;
- (3)新增加或改进措施等,应在**文**危险源辨识、职业健康安全风险评价控制清单》中予以说明,并纳入本单位或基地目标及措施管理。

效果评价及融合:风险,制措施实施后,通过后续的安全隐患排查以及主动性和被动性的 监测跟踪方式进行验验。实现风险级别下降后,将这些控制措施融入组织的管理体系过程之中, 并与相关的业务过程的控制措施予以一并考虑。

2、控制 施的制定

对诉允结果为较大(橙色)及重大风险(红色)的职业健康安全风险定义为高风险(重要危险,),各单位需执行追加管控措施(如目标指标、管理方案、运行控制程序、应急准备与 成应程序等),并报安全环保部。

中试基地安环部牵头组织相关单位及相关人员进行评审,并编制高风险(重要风险源)《危险源辨识、职业健康安全风险评价控制清单》报基地管理者代表审批。对于低风险(蓝色)各单位按现有控制措施,可通过建立目标管理、响应的控制文件和作业指导书进行控制。

3、环境治理设施安全风险管控措施

- (1)废水处理系统拟采取以下管控措施:
- ①工程防控强化

药剂储罐/储槽设置化工级强度罐体+防渗围堰,配套液位报警;建设事故应急池,配备切换阀门,暴雨或高负荷冲击时瞬时截流超标废水;污泥脱水间设置防渗地沟+应急抽吸泵,防止污泥泄漏扩散。

- ②分级应急响应机制
- 一级响应(轻微异常):如加药泵故障,自动切换备用泵并触发声光报警。
- 二级响应(严重故障):如 BDD 催化氧化系统故障,立即停止污水站运营, 后续来水暂存于事故池。
- 三级响应(环境泄漏):若有毒物质泄漏,启动基地应急封闭、吸引,拦截(如沸石滤床)及外部联动救援。
 - ③非正常工况专项应对

暴雨洪涝:提高区域内排水能力标准,关键设备(配成)、控制室)抬高至防洪高程以上,配置移动式抽水泵组。

极寒天气:对曝气管道、药剂管线设计保温表 盖系统,池体加盖并保持曝气

水质突变处置:调节池前端设置 pH、海 等在线仪表,识别来水剧烈波动后关闭进水阀, 开启事故池进水阀门。

④管理保障与能力建设

每月开展"盲演式"应急减练(如模拟设备停电),考核员工应急操作熟练度(目标响应时间 < 10 分钟)。建立岗域风险防控手册,明确各环节责任人及操作红线(如禁止擅自关闭监测设备)。

- (2)废气处理系统拟采取以下管控措施:
- ①除尘器

配套以机采用碳钢风机,喉口及电机防爆;锁气卸灰装置-星型排灰阀电机防爆,系统设置处理灰装置-星型排灰阀电机异常报警,底部容器容积不超过25kg;除尘器及其料仓配置度检测装置,实现了高温时报警与自动喷淋功能;气体管道、压缩空气管道设压力检测装置,以实时监测废气和压缩空气压力并异常报警;除尘器安装无焰泄爆口,以实现发生爆炸时定向泄爆功能;除尘器进口设置手动卸灰阀、隔爆阀、气动切断阀门、气动紧急排空阀门和防火阀以实现主动排灰、气体管道紧急切断与排空、隔火、隔爆功能。

②RTO 装置

RTO 为明火设备,前端安装阻火器。燃烧系统要求进气浓度不超过对应污染成分爆炸下限的 25%,进气端安装 LEL 并预留足够长度。在自控设计中设置多级连锁报警控制,系统运行中发生故障时,程序自动报警并转入待机状态,进气阀门关闭,应急排放系统运行。设置手动紧急停车按钮,发生紧急情况需要停车时,按紧急停车按钮,系统立即停止运行并报警。

7.7.5. 与开发区及社会区域风险防范措施、公共安全应急预案的衔接

1、应急组织机构、人员的衔接

当发生风险事故时,项目综合协调小组应及时承担起与当地区域或各职能管理部门的应急指挥机构的联系工作,及时将事故发生情况及最新进展向有关部门汇报,并将上级指挥机构的命令及时向建设项目应急指挥小组汇报;编制环境污染事故报告,并将报告上级部门汇报。

2、预案分级响应的衔接

①一般污染事故:在污染事故现场处置妥当后,经应急指挥火流研究确定后,向当地环保部门和园区事故应急处理指挥部报告处理结果。

②较大或严重污染事故:应急指挥小组在接到事故报告,及时向泰兴经济开发区事故应急处理指挥部、泰兴市应急处理指挥部报告,并请求支持,园区应急处理指挥部进行紧急动员,适时启动区域的环境污染事故应急预案,迅速调度发援力量,指挥各园区成员单位、相关职能部门,根据应急预案组成各个应急行动小组交流,各自的职责和现场救援具体方案开展抢险救援工作,厂内应急小组听从园区现场指挥部的领导。现场指挥部同时将有关进展情况向泰兴市和泰州市应急处理指挥部汇报;污染产故基本控制稳定后,现场应急指挥部将根据专家意见,迅速调集后援力量展开事故处置工作。现场应急处理结束。

当污染事故有进一步**从**、发展趋势,或因事故衍生问题造成重大社会不稳定事态,现场应急指挥部将根据事故展,及时调整应急响应级别,发布预警信息,同时向泰州市应急处理指挥部和省环境污染事故应急处理指挥部请求援助。

3、污染、理措施的衔接

当成分事故废水超过建设项目能够处理范围后,应及时向园区相关单位请求援助,帮助收集事故废水,以免风险事故发生扩大。

4、消防及火灾报警系统的衔接

厂内消防站、消防车辆与园区消防站配套建设;厂内采用电话报警,火灾报警信号报送至 厂内消防站,必要时报送至园区消防站。

5、应急救援保障的衔接

- (1)单位互助体系:中试基地和周边企业将建立良好的应急互助关系,在重大事故发生后,能够相互支援。
- (2)公共援助力量:企业还可以联系泰兴市公共消防队、医院、公安、交通、安监局以及各相关职能部门,请求救援力量、设备的支持。
 - (3)专家援助:全厂建立风险事故救援安全专家库,在紧急情况下,可以联系获取救援支持
 - 6、应急培训计划的衔接

建设单位在开展应急培训计划的同时,还应积极配合经济开发区开展的应急培训计划,在发生风险事故时,及时与聚集区应急组织取得联系。

7、公众教育的衔接

建设单位对厂内和附近地区公众开展教育、培训时,应加强与周边、农和泰兴经济开发区相关单位的交流,如发生事故,可更好地疏散、防护污染。

7.7.6. 建立园区、应急管理部门联动的风险防范体系

根据《关于做好生态环境和应急管理部门联动工作的意见》(苏环办〔2020〕101号)、《省生态环境厅关于做好安全生产专项整治工作实施之案》(苏环办〔2020〕16号)、《关于进一步加强环保设备设施安全生产工作的通知之(安委办明电〔2022〕17号)要求,本次评价对企业环境治理设施开展安全风险辨识之产并简述企业安全风险管控措施,确保环境治理设施安全、稳定、有效运行。

1、建立危险废物监管联动机制

文件要求:企业法定代表,和实际控制人是企业废弃危险化学品等危险废物安全环保全过程管理的第一责任人。企业发切实履行好从危险废物产生、收集、贮存、运输、利用、处置等环节各项环保和安全发表;要制定危险废物管理计划并报属地生态环境部门备案。申请备案时,对废弃危险化学品、物理危险性尚不确定、根据相关文件无法认定达到稳定化要求的,要提供有资质单位。其的化学品物理危险性报告及其他证明材料,认定达到稳定化要求。

本项目概况:中试基地作为废弃危险化学品等危险废物安全环保全过程管理的第一责任人。根据管理要求,中试基地将切实履行好从危险废物产生、收集、贮存、运输、利用、处置等环各项环保和安全职责;要制定危险废物管理计划并报属地生态环境部门备案。同时,对废弃危险化学品、物理危险性尚不确定、根据相关文件无法认定达到稳定化要求的,提供有资质单位出具的化学品物理危险性报告及其他证明材料。

2、建立环境治理设施监管联动机制

文件要求:企业是各类环境治理设施建设、运行、维护、拆除的责任主体。企业要对脱硫脱硝、煤改气、挥发性有机物回收、污水处理、粉尘治理、RTO 焚烧炉等六类环境治理设施开展安全风险辨识管控,要健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行。

本项目概况:中试基地作为各类环境治理设施建设、运行、维护、拆除的责任主体,将对本次涉及的挥发性有机物回收、污水处理、RTO 焚烧炉等环境治理设施开展安全风险辩护管控,同步健全内部污染防治设施稳定运行和管理责任制度,严格依据标准规范建设环境治理设施,确保环境治理设施安全、稳定、有效运行。同时,要求涉及上述环境治理设施的入驻企业,在其编制环评文件阶段完成相关安全风险辨识管控工作。

根据《国务院安委会办公室、生态环境部、应急管理部关于进一步和强环保设备设施安全生产工作的通知》(安委办明电〔2022〕17号):

1、进一步落实部门监管指导责任

文件要求:各有关部门要紧盯具有脱硫脱硝、挥发性,机物回收、污水处理、粉尘治理、蓄热式焚烧炉 5 类重点环保设备设施的企业,指导整企业按照相关法律法规和技术标准规范要求,开展环保设备设施安全风险辨识评估和 思排查治理,落实安全生产各项责任措施。

本项目概况:中试基地已开展相关环保及**设施安全风险辨识评估,且提出入驻企业应同步开展相关评估的要求,待基地投运后、试基地将作为责任主体定期开展环保设施隐患排查,落实安全生产各项责任措施。

2、进一步落实企业主体责任

文件要求:推动企业的负责人严格履行第一责任人责任,将环保设备设施安全作为企业安全管理的重要组成的,全面负责落实本单位的环保设备设施安全生产工作。严格落实涉环保设备设施新、产,扩建项目环保和安全"三同时"有关要求,委托有资质的设计单位进行正规设计,在选择、类防治技术时要充分考虑安全因素;在环保设备设施改造中必须依法开展安全风险评价。按要求设置安全监测监控系统和联锁保护装置,做好安全防范。对涉环保设备设施相关体位人员进行操作规程、风险管控、应急处置、典型事故警示等专项安全培训教育。开展保设备设施安全风险辨识评估,系统排查隐患,依法建立隐患整改台账,明确整改责任人、措施、资金、时限和应急救援预案,及时消除隐患。认真落实相关技术标准规范,严格执行吊装、动火、高处等危险作业审批制度,加强有限空间、检维修作业安全管理,采取有效隔离措施,实施现场安全监护和科学施救。对受委托开展环保设备设施建设、运营和检维修第三方的

安全生产工作进行统一协调、管理,定期进行安全检查,发现安全问题的,及时督促整改,不得"一包了之",不管不问。

本项目概况:中试基地已开展相关环保设备设施安全风险辨识评估,且提出入驻企业应同步开展相关评估的要求,待基地投运后,中试基地将作为责任主体定期开展环保设施隐患排查,落实安全生产各项责任措施。

7.7.7. 小结

本项目环境风险主要为原辅料库区、中试装置区发生泄漏以及火灾、爆炸事故。化学品泄漏事故及火灾爆炸事故产生的 N,N-二甲基甲酰胺、甲苯、乙腈以及次生伴生污染物 CO、氰化氢等扩散时,下风向敏感目标范围内均未超过物质的大气毒性终点浓度-1、气毒性终点浓度-2。企业只要认真落实相关风险防范措施、严格管理,将能有效地防止力漏、火灾、爆炸等事故的发生;一旦发生事故,依靠完善的安全防护设施和事故应急技术对能及时控制事故,防止事故的蔓延。在企业认真落实本次评价提出的各项风险防范措施后,项目的环境风险是可防控的。

7.8. 新污染物管控措施

本项目 PAE 中试项目涉及新污染物甲苯的产生,对照《关于加强重点行业涉新污染物建设项目环境影响评价工作的意见》(环环评 025)28 号),不属于不予审批环评的项目类别。

(1)源头控制

甲苯是 PAE 中试项目处理原辅料所含有的溶剂,且本次中试的目的之一即为验证最为合适的脱挥参数,故目前暂从发更换原辅料。本项目从源头、中试过程、末端治理对甲苯进行管控,减少新污染物的发生和排放。

(2)清洁生产

(3)末端治理

本项目采取可行污染防治技术处理新污染物甲苯,直接依托基地的 RTO 焚烧系统进行处置,在 RTO 环节利用高温燃烧的原理将甲苯等有机污染物彻底分解为二氧化碳和水等无害物质,确保甲苯能够达标排放。通过上述废气处理方式对甲苯进行处理,属于可行污染防治技术,可确保甲苯达标排放。本项目不涉及设备清洗,仅只有地面冲洗废水中含有少量的甲苯,浓度低,依托基地污水站进行处置,可确保含甲苯出水稳定达标。通过以上废气、废水处理措施可有效减轻新污染物排放对周边环境的影响。

本项目涉及的新污染物甲苯执行《合成树脂工业污染物排放标准》(GB31572-2013,含2024年修改单),在甲苯废气、废水处理方面采取了针对性的措施。甲苯采用 RTO 焚烧进行处理; 地面冲洗废水中含有少量的甲苯, 经基地污水站处理后可满足达标; 要求。

本项目原料及回收的甲苯溶剂均采样吨桶包装,循环使用,不涉及大菜新污染物甲苯的固体废物产生。

对涉及新污染物甲苯的贮存、运输、处置等装置、设备设施及场所,均按《危险废物贮存污染控制标准》(GB18597-2023)等相关国家标准提出发放性、防渗漏、防扬散等土壤和地下水污染防治措施。PAE 所处中试楼、含甲苯原料所处,甲类仓库均已按照重点防渗区进行建设,建立厂区地下水及土壤环境监控体系,并落实土壤、地下水跟踪监测计划。

7.9. 其他物质管控措施

中试基地运营过程中,会涉及恶臭物质、优先控制化学品、有毒有害物或受控物质等,对此,拟采取的管控措施如下:

- (1)源头控制:由中试基地统一负责相关原辅料的采购,并进行密闭暂存,从而减少暂存期间废气的挥发:同时对入外企业提出寻求替代物的建议,从源头减少该类原辅料的使用;
 - (2)清洁生产: 使减过程中,中试设备应密闭,减少废气的产生;
- (3)末端治理—提高废气的收集效率,配套相应的废气、废水处理装置,确保废气、废水稳定达标排放。
- (4) 大學監管: 定期对涉及恶臭物质、优先控制化学品、有毒有害物或受控物质等的入职企业大学、排查档案整理成册、留存备查。

. 环保投资及三同时

建设项目投资总额为 5 亿元,其中环保投资 5000 万元,占总投资的 10%。建设项目环保"三同时"检查见下表:

表7.10-1 环保治理设施"三同时"一览表

项目名称					. <u>//E — 7.14.1</u> 三 丛		园币日 (1(X)			
	污染源	污染物						计画书	北次	(万元)	今出出词
类别	10条源	行朱初	治理措施(建设数量、	观侯、 处垤	・肥力寺)		执行标准的		1又页	()1)[]	完成时间
						《台风树脂. (GB31572-201	工业污染物排	以怀准》 : 修改			
						(GB31572-201 《大气污	2024 平	·			
							32/4041-2021) (MTE//			
							:理送 RTO 系		1		
	 中试废气					人工外处	:埋送 RTO 系统	充			
	中					V / A	染物综合排放		1		
					. 4	DE32/4041-20	021)、《恶身				
						标准》	(GB14554-9				
废气						《化学工业择	军发性有机物持			2000	
//					Ly	(DB32 3151-20				2000	
				(1)	火)	架物排放标	性》(GB3157		-		与建设项
	过程分析室					《大气污》	染物综合排放 222/4041-2021				目同时设
						(DE	332/4041-2021 染物综合排放		1		计,同时
	危废库			∠ & *		(人气/5:	架初综合排放 332/4041-2021				施工,同
				1	X.T. III PA	《大与污	2021年041-2021 染物综合排放		1		时投入运
	 污水站		\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			(DB32/4041-20					行
			x X			标准》	(GB14554-9				
	食堂		12.5			《饮食业油烟抖	非放标准》(GB	18483-2001			
	始人应少	COD、SS、氨氮、	预处理单式 隔油+气浮-	- -混凝沉淀+ ^左	〔浮〕及深度						1
	综合废水	TN、TP、氟化物等	处理单元(BDD 电值	崖化氧化);	300m ³ /d						
	纯水制备废水	COD, SS	A75								
废水	循环系统溢流	COD, SS				污水	处理厂接管标	准	1	500	
<i>l</i> 及小	废水	1	与污水站出力	く混合后接管					1	300	
	蒸汽冷凝水	COD, S									
	冷水机组	COD							_		
	雨污管网	× × ×	雨污分流、	清污分流		排污	5口标准化建设	ζ			

泰兴市襟江投资有限公司泰兴经济开发区中试孵化产业园项目环境影响报告书

					i ~	
噪声	中试、公辅	高噪声设备	设备减振底座、隔声罩、厂房等隔声	厂界噪声达标 人	100	
固废	危险废物仓库	危险废物	占地面积 318m²。	安全暂存,防腐防渗	200	
地下水、宝壤	土 针对	寸重点防渗区、 一般	设防渗区、简单防渗区采取不同防渗措施	防止地下水及一次污染	200	
清污分流、排污口规剂 化设置(剂量计、在约量)	也 范 范化设置,在打 在线监控装置。	非口附近醒目处竖三; 废气排放口设置:	设置 1200m ³ 初期雨水池,雨水排口及废水接管口规立环保图形标识牌等,污水排口设置流量计和 COI 采样口和图形标识牌,所有排气筒规范化设置;危 设置监控系统和标识牌。	D	400	
环境管理 (机构、』 测能力等)	监废气、地下水环	不境监测依托外部。	专业的环境监测机构进行。按照环境监测计划实施		200	
风险	消隊	方系统、环境风险原	立急预案、新增事故应急池 1500m³等。	满足应急需求	200	
绿化			绿化率 20%	符合规划要求	200	
			合计 人が		5000	
		R. KINSK	会化率 20% 合计 ATT THE THE THE THE THE THE THE THE THE T			
	3 <u>1</u> (*)	THE TABLE	329			

7.11. 施工期污染防治措施

7.11.1. 大气防治措施

因本工程施工期较长,伴随着土方的挖掘、装卸和运输等施工活动将给附近的大气环境带来不利影响。因此必须采取合理可行的控制措施其扬尘尽量减轻其污染程度,缩小其影响范围。 其主要对策有:

- (1)对施工现场实行合理化管理,使砂石料统一堆放,水泥应设专门库房堆放,并尽量被搬运环节,搬运时做到轻举轻放,防止包装袋破裂; (2)开挖时,对你则更到上场还见了。
- (2)开挖时,对作业面和土堆适当喷水,使其保持一定湿度,以减少扬尘量, 论的泥土和建筑垃圾要及时运走,以防长期堆放表面干燥而起尘或被雨水冲刷;
- (3)运输车辆应完好,不应装载过满,并尽量采取遮盖、密闭措施, 沿沿途抛洒,并及时清扫散落在地面上的泥土和建筑材料, 冲洗轮胎, 定时洒水压尘, 减少运输过程中的扬尘;
- (4)应首选使用商品混凝土,因需要必须进行现场预拌砂浆、混凝土时,应尽量做到不洒、 不漏、不剩不倒;混凝土搅拌应设置在棚内,搅拌时要**有**寒寒降尘措施;

 - (6)当风速过大时,应停止施工作业,对堆存收砂粉等建筑材料采取遮盖措施。

7.11.2. 废水防治措施

施工期废水包括施工废水和生活污水。施工废水包括砂石料生产系统废水、混凝土的养护废水和施工机械设备冲洗和施工车水冲洗水,其中混凝土的养护废水用量少,蒸发吸收快,故而不会大量进入土壤或水体,水中壤及地表水体环境影响小。对于施工期废水可采取如下措施:

- (1)砂石料生产系统废**水**类要污染物为悬浮物,可经过初级沉淀后再利用或排放,但需注意防止路面漫溢,影响**米**瓷卫生:
- (2)施工机械设备冲洗和施工车辆冲洗水,其主要污染物为石油类,需建设隔油池,经过处理后回用;
- (3) 期生活污水主要污染物为 COD, 因水量较小,本项目将落实收集处理措施。建立临时,所、化粪池及食堂污水隔油池,生活污水定点收集,纳入现有园区污水管网至污水处理。

7.11.3. 噪声防治措施

为了减轻施工噪声对周围环境的影响,建议采取以下措施:

- (1)加强施工管理,合理安排施工作业时间,严格按照施工噪声管理的有关规定执行,夜间应限制高噪声施工作业。夜间如确实因工程或施工工艺需要连续操作的高噪声,则应征得环保部门的同意。
- (2)尽量采用低噪声的施工工具,如以液压工具代替气压工具,同时尽可能采用施工噪声低的施工方法。
 - (3)在高噪声设备周围设置掩蔽物。
 - (4)混凝土需要连续浇筑作业前,应做好各项准备工作,最大限度减少搅拌机运行时间。

除上述施工机械产生的噪声外,施工过程中各种运输车辆的运行,还将会引起敬感点噪声级的增加。因此,应加强对运输车辆的管理,尽量压缩工区汽车数量和行车(1)。 控制汽车鸣笛。

7.11.4. 固废防治措施

本项目产生的固体废物主要是施工期生产废料、弃土、施工员生活垃圾,可采取如下防范措施:

(1)施工前清场

主要是施工场内地面农作物、树木等植物残水和土壤表层熟土。植物残体在平整土地、清基中进行回填和堆积,表层熟土集中堆放作水水用土。

(2)施工弃土处置

基础开挖除一部分回填,一部分流作为弃土处理,应尽量避免不合理的随意堆放处置,以免造成水土流失。

(3)施工废料处理

首先应考虑废料。如 收利用。对钢筋、钢板、木材等下脚料可分类回收,交废物收购站处理;对建筑垃圾,如混凝土废料、废砖、含砖、石、砂的杂土应集中堆放,定时清运,以免影响施工和环境生。

(4) 加工生活垃圾处置

大估垃圾:施工人员集中将产生少量生活垃圾,平均每天每人 0.5kg 左右;施工人员尽可住民房和宿舍,利用已有垃圾处置设施。施工场地临时宿营地应自建垃圾箱、定时清运。如垃圾随意排放,将严重影响环境卫生和施工人员健康。

(5)完工清场的固体废物处理处置

工程完工后临时设施拆除时应防止扬尘、噪声及废弃物污染。

储浆池等施工生产用地,应撤离所有设施和部件,四周溢流砂浆的泥土全部挖除。

施工区垃圾堆放点、临时厕所全部拆除并进行消毒。对所有施工工作面和施工活动区进行 检查;将施工废弃物彻底清理处置,移至弃渣场,或运至垃圾填埋场处理。

8. 环境影响经济损益分析

本项目建设可能会对工程所在地和周围环境产生一定的不利影响。在开发建设中采取必要的环境保护措施可以部分地减缓工程建设对环境所造成的不利影响和经济损失。

本次以建设项目实施后环境影响预测与环境质量现状进行比较,从环境影响的正负两方面 对该工程的环境经济损益状况做简要分析,估算建设项目环境影响的经济价值。

8.1. 环境影响预测与环境质量现状对比

通过对建设项目周边的大气环境质量、地表水环境质量、地下水环境质量、声环境质量、 土壤环境质量现状进行监测和收集,相应的监测值均能满足相关标准要求,同时在客实本环评 提出的各项污染防治措施后,各污染物均能达标排放,对周边环境影响可接。

8.2. 环境保护投资估算

根据项目工程分析和环境影响预测和评价结果,本项目产生的人术、废气、噪声、固废必须采取相应的环境保护措施加以控制,并保证环保资金投入,发表类污染物的环境影响降至最低限度。预估环保投资 5000 万元,总投资 5 亿元,环境投资占比 10%,企业需建立较为完善的污染控制设施,有效地控制和避免有机污染物排产。固废和噪声等对环境的污染,可使本项目产生巨大潜在的环境和经济效益,同时可有大保护周围环境。

8.3. 环境效益分析

8.3.1 环境正效益分析

中试基地项目的建设是与企业 坚持推进的"创新"为中心的运营机制和发展战略相吻合的。目前,产品在从实验室 化市场的过程中,遇到了以下问题:

首先,产品若没有经过发试后直接进行生产,工艺、技术参数可靠性不强,甚至与大生产脱节,造成工时浪费发加了资金投入;再者产品若没有经过中试后直接进行生产,对该产品的工艺研究不够,无法进行准确的安全评价、环境影响评价,给以后大生产增加了安全环保事故隐患。

中流之地项目建成后,企业将依托高新技术的优势,对高技术附加值产物进行集中力量的中流、通过试制公斤级高附加值、低污染低耗能的产物,摸清产品生产工艺、技术参数,同时一个"三废"源强、污染防治措施等方面的研究,为规模化生产打好安全、经济、环保的基础。此外,中试基地项目的建设还具有以下意义:

1、系列产品开发功能

中试基地不局限于某一项目的开发或单一产物的研发,而是能进行行业多功能的中间试验,对系列产物的研究,产物质量的提高对促进产物更新换代起到指导作用。

2、人才引进功能

人才资源是推动经济社会转型发展的"第一资源"。企业将依托现有中试项目平台,为创新 人才提供适宜的发展空间,也能够通过此平台,吸收更多的人才前来发展。

3、人才促进现代化管理功能

也通行 中试基地的建设按照相关的标准要求,设计软件和原始记录,逐步完善硬件,中试基地 过不断完善的规范化管理,提高了中试基地科技人员的现代化管理水平。

因此,中试基地项目的建设具有非常积极的环境正效益。

8.3.2 环境负效益分析

本项目建设主要的环境经济损失表现在污染治理设施的投资及运行 对环境质量的影响以及周围企业可能承受的污染损失、企业罚款、赔偿 虽难以对其进行准确定量,但只要企业强化管理,因事故性排放过 "杨失将成为小概率事件, 因此其损失费用总额不会很大。

本项目营运过程中产生的废气、废水、固废、噪声均 的排放基本符合国家有关标准的要求,使本项目建设为周围环境的影响减少到最低的程度。

8.4. 小结

1、经济效益

本项目建成后,产生的直接经济效益较难体现,但通过本项目的实施运营,进一步加强了 企业的技术研发能力,为今后的产业 高收率、降低成本等具有较大的作用,使企业在今后发 展过程获得更好的市场竞争

2、社会、环境效益

企业的可持续发展具有重要的作用,从而对泰兴的经济发展起到推动 本项目建成后 会效益。项目实施后,将有一定量的废水、废气排放,因此会对环境造成 **试基地必须认真落实"三废"治理措施,使配套建设的环境保护设施严格做到与 司时设计、同时施工、同时投产使用,使环保设施早日竣工,通过环保行政主管部门 明确"三废"达标排放,做到经济效益、社会效益和环境相统一。

9. 环境管理与监测计划

环境管理是企业管理中的一个重要环节,以环境科学理论为基础,运用技术、行政、教育 等手段对经济社会发展过程中施加给环境的污染破坏活动进行调节控制,实现环境、社会、经 济协调可持续发展。环境监测可反映项目施工建设中和建成后实际产生的环境影响,监督各项 对 科学的成 环保措施的落实执行情况,根据监测结果适时调整环境保护行动计划,为环保措施的实施时间 和周期提供依据,并及时发现问题,避免造成重大的意外环境影响,为环境管理提供 据。

9.1. 环境保护管理

9.1.1 施工期环境管理

1、施工期管理机构及职责

施工期环境管理模式为施工单位、监理单位和建设单位

选择具有 HSE 管理体系资质证书的专业施工单位, **◆∕应**付对本项目的环境特点及 周围保护目标的情况,制定相应的措施,确保施工作业 想敏感的影响降至最低。

监理单位应将环保措施及施工合同中规定的各项环 措施作为监理工作的重要内容,对环 保工程质量严格把关,以便及时发现施工中可能分取的各类生态破坏和环境污染问题,并监督 施工单位落实施工中应采取的各项环保措施

建设单位按照 HSE 管理体系制定相关的施工期管理规定,对施工承包商提出 HSE 方面的 严格要求。当出现重大环境问题或 付,积极组织有关力量协商解决,并协助各施工单位处 理好与地方环保部门、公 监相关各方的关系。

2、施工期环境管理试

本次环评针对本规目特点初步拟定了以下施工期环境管理计划:

《境监督小组,配合环保主管部门监督建设单位和施工单位落实施工过程中

呈施工活动对环境污染和生态破坏,建设单位应与施工单位就工程建设期间的环境 工项目环境污染控制合同。

施工单位应严格遵守环保法律法规,并对施工区及周边地区所产生的环境质量问题负责。 施工单位在施工组织设计中应有针对性地环保措施并予以实施。建立健全环境质量保证体 系, 落实环境质量责任制, 并加强施工现场的环境管理。施工现场应有环保管理工作的自检记 录。

施工单位应编制 HSE 计划,文明施工,优化施工现场的场容场貌,严格执行操作与安全 规程。

9.1.1 运营期环境管理

1、营运期管理机构及职责

企业设有专门的 HSE 管理机构,并配备有专职的管理人员,项目运行后由该机构负责证的环保管理工作。HSE 管理机构的环保职责是:
(1)贯彻执行环保方针、政策,制定实施环保工作计划、规划;
(2)审查、监督项目的"三同时"工作,组织环保工作的实施、验收和考核;
(3)组织建设项目排污许可申报;
(4)监督检查环保设施的正常运行,保证"三废"达标排放;
(5)环境监测站的管理,指导和组织日常环境监测;
(6)负责事故的调查、分析及处理,编制环保考核等报告 目的环保管理工作。HSE 管理机构的环保职责是:

本次环评针对本项目特点初步拟定了以下营运

- (1)制定各类环境保护规章制度、规定及技力
- 环保文件、环保设施、环保设施检修、运行台 (2)建立完善的环保档案管理制度, 账等档案管理;
 - (3)监督、检查环保"三同时"的
- 、非正常 1 况和事故状态下的污染物处理、处置和排放管理措施,配置 态下的处理、处置污染物的环保设施;
 - 缭进行监测,保证各类污染源达标排放;
 - 设置自动在线连续监测系统;
 - 发性污染事故处理预案",最大限度地减少对环境造成的影响和破坏;
 - 实施全厂的环境绿化。

境信息公开

建设单位在环评编制、审批、排污许可证申请、竣工环保验收、正常运行等各阶段均应按 照有关要求,通过网站或者其他便于公众知悉的方式,依法向社会公开拟建设项目污染物排放 清单,明确污染物排放的管理要求。包括工程组成及原辅材料组分要求,建设项目拟采取的环 境保护措施及主要运行参数,排放的污染物种类、排放浓度和总量指标,排污口信息,执行的 环境标准,环境风险防范措施以及环境监测等相关内容。

《企业事业单位环境信息公开办法》《国家重点监控企业自行监测及信息公开办法》等规 定公开下列信息:

- (1)基础信息,包括单位名称、组织机构代码、法定代表人、生产地址、联系方式,以及生 产经营和管理服务的主要内容、产品及规模;
- (2)排污信息,包括主要污染物及特征污染物的名称、排放方式、排放口数量和分布情况 排放浓度和总量、超标情况,以及执行的污染物排放标准、核定的排放总量;
 - (3)防治污染设施的建设和运行情况;
 - (4)建设项目环境影响评价及其他环境保护行政许可情况;
 - (5)突发环境事件应急预案;
 - (6)其他应当公开的环境信息。

同时还应公开环境自行监测方案,其中包括:

- (1)基础信息:企业名称、法人代表、所属行业、地理位 测机构名称等;
 - (2)自行监测方案:
- (3)自行监测结果:全部监测点位、 监测时间 2物种类及浓度、标准限值、达标情况、 超标倍数、污染物排放方式及排放去向;
 - (4)未开展自行监测的原因;
 - (5)污染源监测年度报告。

9.2. 环境监测计划

本项目主要是在运行, 「境质量造成一定影响,因此,除了加强环境管理,还应定期进 不同时期对周围环境的影响,以便采取相应措施,最大程度上减轻不 利影响。

立专职环境监测人员负责运行期环境质量的日常监测工作,或委托有资质的 构进行监测,监测结果上报当地环境保护主管部门。

非污口规范化设置

1、排污口管理

拟建项目合计有 7 个废气排气筒(食堂除外,其中 FO-1~FO-5 由中试基地统一建设, FQ-6~FQ-7 为入驻企业自行配置)、1个污水排放口、1个雨水排放口,危废库1个。

2、排污口规范管理原则

(1)排污口的设置必须合理,按照环监(96)470号文件要求,进行规范化管理;

- (2)根据工程特点,将排放列入总量控制指标的污染物的排污口作为管理的重点;
- (3)排污口应便于采样与计量检测,便于日常现场监督检查;
- (4)如实向环保管理部门申报排污口数量、位置及所排放的主要污染物种类、数量、浓度、排放去向等情况;
 - (5)废气排气装置应设置便于采样、监测的平台,设置应符合《污染源监测技术规范》
 - (6)固废堆放场应设有防扬散、防流失、防渗漏措施。

3、排污口立标管理

4、排污口建档管理

要求使用原国家环保总局统一印刷的《中华人民共和文规范化排污口标志登记证》,并填写相关内容;根据排污口管理档案内容要求,项目建成产运营后,应将主要污染物种类、数量、浓度、排放去向、立标情况及设施运行情况及录于档案内。

排污单位应建立环境管理台账制度,设置,职人员开展台账记录、整理、维护等管理工作,并对台账记录结果的真实性、准确性工整性负责。

为便于携带、储存、导出及证 发 方许可证执行情况,台账应按照电子化储存和纸质储存两种形式同步管理,保存期限 4 少于三年。

排污单位环境管理台域发真实记录生产运行、污染治理设施运行、自行监测和其他环境管理信息。其中记录频域中内容须满足排污许可证环境管理要求。

5、排污口管理要求

按照原义环保总局《排污口规范化整治技术要求》(环监(1996)470号),本项目排污口规范化管理具体要求见表 9.2-1。

	表 7.2-1 1111 J D M.他们自在安尔农
▼ 1 项目	主要要求内容
•	①凡向环境排放污染物的一切排污口必须进行规范化管理; ②将总量控制的污染物排污口及行业特征污染物排放口列为管理的重点; ③排污口设置应便于采样和计量监测,便于日常现场监督和检查; ④如实向环保行政主管部门申报排污口位置,排污种类、数量、浓度与排放去向等。
	①排污口位置必须按照环监(1996)470号文要求合理确定,实行规范化管理; ②危险废物贮存设施应根据贮存的废物种类和特性按照GB18597附录A设置标识; ③具体设置应符合《污染源监测技术规范》的规定与要求。

表 9.2-1 排污口规范化管理要求表

	主要要求内容
立标管理	①排污口必须按照国家《环境保护图形标志》相关规定,设置环保图形标志牌; ②标志牌设置位置应距排污口及固体废物贮存(处置)场或采样点较近且醒目处,设置高度一般为标志牌上缘距离地面约 2m; ③重点排污单位排污口设立式标志牌,一般单位排污口可设立式或平面固定式提示性环保图形标志牌; ④对危险物贮存、处置场所,必须设置警告性环境保护图形标志牌
建档管理	①使用《中华人民共和国规范化排污口标志登记证》,并按要求填写有关内容; ②严格按照环境管理监控计划及排污口管理内容要求,在工程建成后将主要污染物种类量、排放浓度与去向,立标及环保设施运行情况记录在案,并及时上报; ③选派有专业技能环保人员对排污口进行管理,做到责任明确、奖罚分明

6、雨水排口管理要求

企业为《江苏省重点行业工业企业雨水排放环境管理办法》(苏污防攻坚体为〔2023〕71号)中所述重点行业工业企业,企业现有项目正在建设,已建设部分初期成为及后期雨水收集处理系统,本次项目建设时需对照管理办法进一步完善厂内初期及后域的水收集处理系统,具体内容如下:

表 9.2-2 雨水排口管理要求

	农 9.2-2 闲水排口自生安 7.2-2
项目	主要要求
	第四条 工业企业应根据厂区地形、平面布置、污染区域及环境管理要求等开展雨水分区收集,
	建设独立雨水收集系统,实现雨水收集系统,覆盖。实施雨污分流、清污分流,严禁将生产
	废水和生活污水接入雨水收集系统,或出现流流、渗漏进入雨水收集管网的现象。
总则	第五条 工业企业污染区域的初期雨水水系管网及附属设施宜采用明沟或暗涵(盖板镂空)收
	集输送,并根据污染状况做好防渗水、腐措施,设计建设应符合《室外排水设计标准》等相
	关规范和标准要求。
	第六条 工业企业雨水收集管道 附属设施内原则上不得敷设存在环境风险的管线。
	第十条 雨水收集池同时兼成事故应急池的作用时,池内容积应同时具备事故状况下的收集功
	能,满足事故应急预案中的相关要求。事故应急池内应增加液位计,实时监控池内液位,初
	期雨水收集进入应急流流能迅速通过提升泵转至污水处理系统,确保应急池保持常空状态;
	同时应设置手动阀分、备用,确保在突发暴雨同时发生事故等极端情况下,即使断电也能采
	取手动方式实现成熟池阀门和雨排阀的有效切换。
初期雨水收集	
与管理	标高与切り、门开启连锁,通过设定的液位控制阀门开启或关闭,实现初期污染雨水与后期
	洁净雨、艺然分流。因现场局限无法设置初期雨水收集池的污染区域,应设置雨水截留装置,
	安装固定泵和流量计,直接将初期雨水全部收集至污水处理系统。
	★ 初期雨水应及时送至厂区污水处理站处理,原则上5日内须全部处理到位;未配套
L.	从 水处理站的,应及时输送至集中污水处理设施处理,严禁直接外排。
-12	第十三条 无降雨时,初期雨水收集池应尽量保持清空。
-://	

第十五条 后期雨水可直接排放或纳管市政雨水管网。雨水排放口水质应保持稳定、清洁。严禁将后期雨水排入污水收集处理设施,借道污水排口排放的,不得在污水排放监控点之前汇入,避免影响污水处理设施效能或产生稀释排污的嫌疑。

第十六条 工业企业原则上一个厂区只允许设置一个雨水排放口。确需设置两个及以上雨水排放口的,应书面告知生态环境部门。

后期雨水收集 与管理

第十七条 工业企业雨水排放口前须设置明渠或取样监测观察井。明渠长度一般不小于1.5米,检查井长宽不小于0.5米,检查井底部要低于管渠底部0.3米以上,内侧贴白色瓷砖。

第十八条 工业企业雨水排放口应设立标志牌,标志牌安放位置醒目,保持清洁,不得污损、破坏。

第十九条 工业企业雨水排放口应按相关规定和管理要求安装视频监控设备或水质在线监控设备,并与生态环境部门联网。水质在线监控因子由生态环境部门根据环境影响评价、排污

東京 主要要求內容 许可管理、接管集中式污水处理厂去除能力,以及下游水功能区、国省考断面、饮用水源地等敏感目标管理要求等确定。 第二十条 为有效防范后期雨水异常排放,必要时在雨水排放口前应安装自动紧急切断装置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现明显升高,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。 第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排应回,为式、监测计划等信息。 第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接、观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维。如管理,记录并妥善条保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查,现场执法监管。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维。如管理,记录并妥善第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维。如常理,记录并妥善第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维。第二十二条 工业企业而水排水管网图,应纳入企业环境信息公开发作内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和域中规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十一条 雨水排放口无雨时排水,或降雨时排水出风深水物浓度异常,甚至超过《污水综合排放标准》或行为水流、建建监管相应的法律责任。或涉嫌以不正当运行治理设施、利用雨水排放口排污。发光或逐渐发展,甚至超过《污水综合排放标准》或行为相应的法律责任。第二十八条 企业发生水污染物排放标准,全检查核		
等敏感目标管理要求等确定。 第二十条 为有效防范后期雨水异常排放,必要时在雨水排放口前应安装自动紧急切断装置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现明显升高,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。 第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥、降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载外水水排放口数量和位置、排放(回用)方式、监测计划等信息。 第二十二条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和水物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接处观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。 第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和内管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即场执法监管。第二十五条 工业企业市水排水管网图,应纳入企业环境信息公开设下内容,主动接受社会公众监督。 第二十六条 工业企业市水排水管网图,应纳入企业环境信息公开设下内容,主动接受社会公众监督。	项目	主要要求内容
等敏感目标管理要求等确定。 第二十条 为有效防范后期雨水异常排放,必要时在雨水排放口前应安装自动紧急切断装置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现明显升高,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。 第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥、降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载外水水排放口数量和位置、排放(回用)方式、监测计划等信息。 第二十二条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和水物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接处观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。 第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和内管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即场执法监管。第二十五条 工业企业市水排水管网图,应纳入企业环境信息公开设下内容,主动接受社会公众监督。 第二十六条 工业企业市水排水管网图,应纳入企业环境信息公开设下内容,主动接受社会公众监督。		许可管理、接管集中式污水处理厂去除能力,以及下游水功能区、国省考断面、饮用水源地
第二十条 为有效防范后期雨水异常排放,必要时在雨水排放口前应安装自动紧急切断装置,并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现明显升高,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,随两停止1至3日后一般不应再出现对外排水。第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载对水水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统目常检查与维护,及时清理淤泥和水物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接、观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运程和关闭管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查,现场执法监管。第二十五条 工业企业应对强视频监控设备或水质在线监控设备的运程和对场执法监管。第二十五条 工业企业应建立明确的雨水排放口管理制度和减少规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出风水和浓度,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出风水和浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,大逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启对。		
并与水质在线监控设备连锁。发现雨水排放口水质异常,如监控因子浓度出现明显升高,或超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载对水水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统目常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接、观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维系,即管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即知为执法监管。第二十五条 工业企业应建立明确的雨水排放口管理制度和减少规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出现一条物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动,各预案或采取相应的防范措施,造成污染物		
超过受纳水体水功能区目标等管控要求时,应立即启动工业企业突发环境事件应急预案,立即停止排水并排查超标原因,达到相关要求后方可恢复排水。第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载时水水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和来物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接条现象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维系外的管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即场执法监管。第二十五条 工业企业应对强视频监控设备或水质在线监控设备的运维系外的管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即场执法监管。第二十一条 工业企业应建立明确的雨水排放口管理制度和其体规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出两个杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核水、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动,流预案或采取相应的防范措施,造成污染物		
即停止排水并排查超标原因,达到相关要求后方可恢复排水。第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载时下水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接类观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和外管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开制度内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和城中规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出风气染物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动、流频案或采取相应的防范措施,造成污染物		
第二十一条 无降雨时,工业企业雨水排放口原则上应保持干燥;降雨后应及时排出积水,降雨停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载的水水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和头物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接关观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和内管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开和内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和城华规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出风,杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,发达避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动、逐预案或采取相应的防范措施,造成污染物		即停止排水光排本权标值用。让到相关两龙丘宝可恢复排水
爾停止1至3日后一般不应再出现对外排水。 第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载明水水排放口数量和位置、排放(回用)方式、监测计划等信息。 第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接产观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。 第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和分管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查,现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发产内容,主动接受社会公众监督。 第二十六条 工业企业应建立明确的雨水排放口管理制度和其色规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。 第二十七条 雨水排放口无雨时排水,或降雨时排水出观点杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核产产企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污产产式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动。预案或采取相应的防范措施,造成污染物		
第二十二条 工业企业雨水排口应纳入环评及排污许可管理。企业应在排污许可证上载明水水排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接产现象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和产的管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查、产现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发产内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和坏产规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出风水余物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核水、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污流、试逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动及流流案或采取相应的防范措施,造成污染物		
排放口数量和位置、排放(回用)方式、监测计划等信息。第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和条物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接、观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和关闭管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发理内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和抵处规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出观长和浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核关,企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污、发式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动,必须案或采取相应的防范措施,造成污染物		XII.
第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接产现象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和外管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。产现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发作内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和探华规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出观光杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核关,企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污、发光速避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动、流频案或采取相应的防范措施,造成污染物		
设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接、观象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和公司管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。即现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发中内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和城华规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出双一条物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核火,企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污、发光逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动、各项案或采取相应的防范措施,造成污染物		
将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。 第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和 问管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查 即现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发 政治,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和城华规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出观一杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核 企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污 的 光速		第二十三条 工业企业应定期开展雨水收集系统日常检查与维护,及时清理淤泥和杂物,确保
第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和人的管理,记录并妥善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查人,现场执法监管。第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发程内容,主动接受社会公众监督。第二十六条 工业企业应建立明确的雨水排放口管理制度和城华规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出观火染物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核火、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污、发式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动人之预案或采取相应的防范措施,造成污染物		设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接**观象,严禁
善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。		将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。 ***
善保存雨水监测、设施运营等台账资料,接受相关管理部门监督检查。		第二十四条 工业企业应加强视频监控设备或水质在线监控设备的运维和 网管理,记录并妥
第二十五条 工业企业雨水排水管网图,应纳入企业环境信息公开发作内容,主动接受社会公众监督。 第二十六条 工业企业应建立明确的雨水排放口管理制度和操作规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。 第二十七条 雨水排放口无雨时排水,或降雨时排水出观、杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核文、企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污等方式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动、流预案或采取相应的防范措施,造成污染物		A X X
第二十六条 工业企业应建立明确的雨水排放口管理制度和操作规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。 第二十七条 雨水排放口无雨时排水,或降雨时排水出观火染物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核火火企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污染火式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动人之预案或采取相应的防范措施,造成污染物	15.15.14	
第二十六条 工业企业应建立明确的雨水排放口管理制度和操作规程,并张贴上墙,开展日常操作演练,避免人为误操作等引发环境污染事故。第二十七条 雨水排放口无雨时排水,或降雨时排水出观火染物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核火,企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污,发式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动,总预案或采取相应的防范措施,造成污染物	维护管理	☆监督。
第二十七条 雨水排放口无雨时排水,或降雨时排水出观火杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核火火企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污火火式逃避监管相应的法律责任。第二十八条 企业发生水污染事故,未及时启动人之预案或采取相应的防范措施,造成污染物		
第二十七条 雨水排放口无雨时排水,或降雨时排水出次入杂物浓度异常,甚至超过《污水综合排放标准》或行业水污染物排放标准,经检查核文分企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污(多)式逃避监管相应的法律责任。第二十八条企业发生水污染事故,未及时启动人之预案或采取相应的防范措施,造成污染物		
合排放标准》或行业水污染物排放标准,经检查核文。企业应依法承担超标排污责任,或涉嫌以不正当运行治理设施、利用雨水排放口排污法文式逃避监管相应的法律责任。 第二十八条 企业发生水污染事故,未及时启动、流预案或采取相应的防范措施,造成污染物		
嫌以不正当运行治理设施、利用雨水排放口排污等人式逃避监管相应的法律责任。第二十八条企业发生水污染事故,未及时启动、流流案或采取相应的防范措施,造成污染物		
第二十八条 企业发生水污染事故,未及时启动,这预案或采取相应的防范措施,造成污染物		
从雨水排放口排放的,应承担涉嫌过失或故意行为相应的法律责任。		第二十八条 企业发生水污染事故,未及时启动、 预案或采取相应的防范措施,造成污染物
		从雨水排放口排放的,应承担涉嫌过失或故意行为相应的法律责任。

企业在后期建设中,将对照《江苏省重点行**以工**业企业雨水排放环境管理办法》(试行),企业已完成雨污分流工作,根据厂内平面布发情况设置了初期雨水收集池、事故水池,企业在雨水排口及污水排口安装了视频监控设备并与环保部门联网;管网敷设符合管理办法要求。企业在实际运行管理过程中应严格按照管理办法要求,初期雨水及时送至厂区污水处理站处理,保证5日内须全部处理到位: 大降雨时,初期雨水收集池应尽量保持清空;降雨后应及时排出积水,降雨停止1至3日为一般不应再出现对外排水;定期开展雨水收集系统日常检查与维护,及时清理淤泥和采物,确保设施无堵塞、无渗漏、无破损,确保不发生污水与雨水管网错接、混接、乱接等现象,严禁将生活垃圾、固体废弃物、高浓度废液等暂存、蓄积或倾倒在雨水沟渠。

根据《江苏省地表水氟化物污染治理工作方案(202-2025年)》(苏污防攻坚指办〔2023〕 2.4、相关规定,涉氟企业雨水排放口安装氟化物在线监控装置并联网。

运营期监测计划

9.2.2.1 监测机构

基地日常监测可委托第三方检测机构执行具体环节监测计划,中试基地做好监测数据的归档工作。

9.2.2.2 污染源监测计划

根据入驻企业的排污特点及环境特征,本次参照《排污单位自行监测技术指南 石油化学 工业》(HJ947-2018)等相关要求,对运营期污染源进行监测。

拟建排气筒应设有便于采样、监测的采样口和采样监测平台,在排气筒附近地面醒目处设施。 境保护图形标志牌,废气污染源监测点、监测项目及监测频次见表 9.2-1。 表 9.2-3 运营期废气污染源监测 有环境保护图形标志牌,废气污染源监测点、监测项目及监测频次见表 9.2-1。

	10000000000000000000000000000000000000	
监测点位置	监测项目	X
		大 线自动监测
		1 次/季
FQ-1(RTO 焚烧系统)	100)	1 次/月
rQ-I(KIO 灰烷系织)		1 次/半年
		1 次/季
		1 次/年
FQ-2(过程分析室)	₩	在线自动监测
PQ-2 (过往分价至)		1 次/半年
FQ-3、FQ-4(危废库)		在线自动监测
TQ-3、TQ-4(厄及库)		1 次/半年
FQ-5 (污水站)	. 1.3	在线自动监测
	Sign (V)	1 次/月
FQ-6	N/W×	1 次/月
FQ-7	XXX	1 次/月
厂界无组织	Δ^{\times}	1 次/季

2、废水污染源监测

个雨水排放口,按照相关环保规定要求,对建设项目污水 接管口的主要水污染物质 · 宁监测,并在接管口附近醒目处,设置环境保护图形标志牌。 具 体监测计划如下。

表 9.2-4 废水污染源监测

监测点位置	监测项目	监测频率
污水站出水口外	pH 值、COD、氨氮、总氮、TP、氟化物、氯化物、石	1 次/月
排水缓冲化3	油类、AOX、LAS、甲苯等	1 10/7
1/2/5)2	pH 值、COD、氨氮、TN、TP,流量	自动监测
*************************************	COD、氨氮,流量	1 次/周
(外排水池)	pH 值、SS、TN、TP、石油类、硫化物	1 次/月
A CALILLY CARE	氟化物、可吸附有机卤化物(AOX)、甲苯	1 次/季
(\'	其他废水污染物	1 次/半年
	pH 值、化学需氧量、SS	每日监测一次
雨水排放口	pn 恒、化子而利里、55	(排放期间按日监测)
	pH 值、COD	自动监测
1.07.3-1	_	·

3、噪声监测

监测项目: 昼间和夜间的厂界噪声值。

监测点位:基地四个厂界处。

监测时间和频次:每季度一次。

4、地下水监测计划

监测点位:根据导则,对于三级评价项目,项目运行期跟踪监测点的布置一般不少于应至少在建设项目场地下游布设1个。
(1)监测层位:潜水含水层,采样深度:水位以下1.0m之内
(2)监测因子:除放射性指标外的常规37项及特征指标因子。
(3)监测频率:每年监测一次。

个,应至少在建设项目场地下游布设1个。

5、土壤监测计划

监测点位: 危废库区域、污水站区域、中试区废水收集罐

监测指标: pH 值、45 项基本项目、石油烃(C10~C40)

监测频次:每5年监测一次

执行标准:《土壤环境质量 管控标准》(试行)(GB36600-2018)。

6、监测数据管理

上述监测结果应按相关规定及时建立档 并定期向所在地环境保护行政主管部门汇报, 并及时发布监测资料。如发现异常或发生的,应加密监测频次,并分析污染原因,及时采取 相应措施。

9.2.2.3 环境质量监测计划

拟建项目环境监测

表 9.2-5 环境质量监测计划一览表

	类别	造 测点位	监测点数/断 面数	监测指标	监测频次
	环境 空气	厂界外	1个	非甲烷总烃、氟化氢、硫化氢、氯 气、氯化氢、甲苯、硫酸、氨	1次/年,每次监测7天
	地表	洋思港	1个	pH值、COD、氨氮、TN、总磷、 石油类、氟化物、AOX	1次/年,每次连续测2 天,上下午各一次
梦	地下水	项目场地重点污染防治区、 上、下游跟踪监测井	3个	除放射性指标外的常规37项及特征 指标因子	1次/年
	土壤	危废库、污水站、中试区地 埋废水罐区域	3个	pH值、45项基本项目、石油烃 (C ₁₀ ~C ₄₀)、二噁英类	1次/5年

上述污染源监测及环境质量监测若企业不具备监测条件,须委托当地环境监测站或得到环 境管理部门认可的有资质单位进行监测,监测结果以报告形式上报当地环保部门。当地生态环 境局应对本项目的环境管理及监测的具体执行情况加以监督。

9.2.2.4 验收监测计划

- (1)各生产装置的实际生产能力是否具备竣工验收条件,如项目分期建设,则"三同时"验 也相应地分期进行。
 - (2)按照"三同时"要求,各项环保设施是否安装到位,运转是否正常。
 - (3)在厂界下风向布设厂界无组织监控点。
 - (4)各废气有组织排放口采样监测。
 - ①监测项目: 废气量、各装置进出口所涉及的污染物浓度、
 - ②监测频次:连续采样2天,根据不同的污染物确定每天的
 - (5)厂界噪声点布设监测,布点原则与现状监测布点
- (6)固体废物收集、暂存及处置情况,危废库是否已提及 之建设并落实防腐、防渗等设计, 签计有效的处置协议。 危险废物转移处置台账是否完整、危废处置是否已
 - (7)大气环境防护距离的核实,确定。
- (8)是否已执行排污许可的填报与申请 驻企业单独申领),基地风险应急预案编制及 备案情况。
 - (9)污染物排放总量的核算 否控制在环评批复范围内。
 - ⑩检查各排污口是否设置

9.2.2.5

当发生较大污染状的,为及时有效地了解本企业事故对外界环境的影响,便于上级部门 **6** 需委托环境监测机构进行环境监测,直至污染消除。

和事故大小,确定监测点布置,从发生事故开始,直至污染影响消除,方可

爱水监测

基地内监测点布设同正常生产时的监测采样点。如果涉及雨水系统污染,应及时通知基地 目关人员,并对公司雨水排口进行监测。

监测因子: pH、COD、SS、氨氮、总氮、总磷、动植物油、石油类、氟化物、氯化物、 全盐量、AOX等(根据废水实际排放因子调整)。

监测频率: 每 2h 一次。

2、废气监测

一旦发生事故排放时,应立即启动应急监测措施,并联系当地主管环保部门的环境监测站 展开跟踪监测,根据事故发生时的风向和保护目标的位置设立监测点。

监测因子为: 非甲烷总烃、颗粒物、氟化氢、氯化氢、二氧化硫、氮氧化物、硫酸雾、甲苯、氨、甲醇、丙酮、乙腈、乙酸乙酯、硫化氢等(根据废气实际排放因子调整)。

监测频次应进行连续监测,待其浓度降低至控制浓度范围内后适当减少监测频次。

3、噪声监测

监测点设在正常生产运行的监测点,设备异常事故引起厂界噪声超标时,及时停机进行检修,消除异常后进行厂界监测,直至厂界达标。

若企业不具备污染监测及环境质量监测条件,可委托有资质的环境上测单位进行监测,监测结果以报表形式上报当地环境保护主管部门。

9.3. 排污许可证制度

企事业单位应依法开展自行监查 安装或使用监测设备应符合国家有关环境监测、计量认证规定和技术规范,保障数据全法有效,保证设备正常运行,妥善保存原始记录,建立准确完整的环境管理台账,安装在资监测设备的应与环境保护部门联网。企事业单位应如实向环境保护部门报告排污许可证 发不符的,依法向社会公开污染物排放数据并对数据真实性负责。排放情况与排污许可证 发不符的,应及时向环境保护部门报告。

根据《风光污染源排污许可分类管理名录(2019 年版)》(以下简称"管理名录"),本项目属于作规定的排污单位,因此中试基地要求入驻企业开展相关的排污许可申请工作,基地见为其进行统一管理。

隐患排查制度

为防范火灾、爆炸、泄漏等生产安全事故直接导致或次生突发环境事件,要求中试基地依据《企业突发环境事件隐患排查和治理工作指南(试行)》(公告 2016 年 第 74 号)、《工业企业及园区突发环境事件隐患分级判定方法(试行)》(苏环办〔2022〕248 号)对开展相关的突发环境事件隐患排查工作,具体排查内容及频次依据相关文件执行。

同时,要求中试基地参照《重点监管单位土壤污染隐患排查指南(试行)》(2021年 第 1号)对基地开展土壤及地下水污染隐患排查工作,具体排查内容及频次依据相关文件执行。

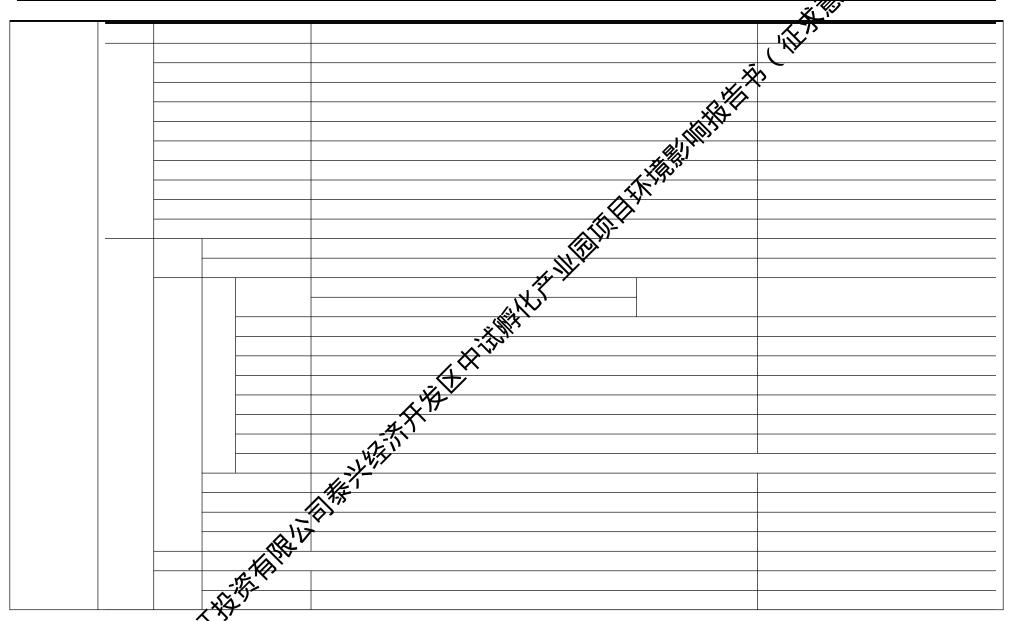
9.5. 污染物排放清单和信息公开内容

9.5.1 信息公开

根据《企业事业单位环境信息公开办法》(环境保护部令第31号)相关内容,公开下 信息:

- (1)基础信息,包括单位名称、组织机构代码、法定代表人、生产地址、联系方式(
- (2)排污信息,包括主要污染物及特征污染物的名称、排放方式、排放) 排放浓度和总量、超标情况, 以及执行的污染物排放标准、核定的

 - (4)建设项目环境影响评价及其他环境保护行政许可情况
 - 应急激热的时间、演练内容、可能存在的
 - 环境风险类型、应急和自我保护措施和相


9.5.2 污染物排放清单

本项目污染物排放清单见下表:

表 9.5-1 拟建项目污染物排放清单

		次 9.3-1 拟建坝							
<u> </u>		中试孵化园 5 岁	《产业中试方向最大研发规模一览表						
			(1/1),						
	中试孵化园 5 类产业中试方向最大研发规模一览表								
			, XIII						
			. ()						
	中试孵化园最大可入场的自数量汇总表								
	中试楼编号	楼层数	防火分区设置	可入驻项目数量					
			1楼: 1个	1个					
	1#中试楼	2F	2楼: 1个	1 ↑					
		2F 2F 2F	1楼: 1个	1 ↑					
	2#中试楼	2F	2楼: 1个	1 个					
工程组成 ——			1 +* 1 △	1个					
	3#中试楼	2F 4	1楼: 1个						
	L > D DK		2 楼: 1 个	1 1					
<u> </u>	4#中试楼	₩ ^{IFI7}	1 个	1 个					
	5#中试楼	-4.7 _{2F}	- 12 1	2 个					
	3/1 PVIX	1. J. 17. 21	2 楼: 2个	2 个					
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 楼: 2 个	2 个					
	6#中试楼	3F	2楼: 1个	1 个					
	5#中试楼 6#中试楼 7#中试楼	4x	3 楼: 1 个	1 个					
	,		1楼: 1个	1 个					
	7#中试楼	3F	2楼: 1个	1 ↑					
	No.	-	3楼: 1个	1 ↑					
	- K		1楼: 1个	1 ↑					
	8#中试程)>	3F	2楼: 1个	1 ↑					
	0#T (1%)		2 按: 1]	1 1					

自计 / 21 个 中试孵化园首批拟入驻中试项目清单					3楼: 1个	1 ↑			
おります まります まりますす		合计		/	('\	<u>V</u>			
お建项目依托中试楼 第20 米 参数 一覧表	中试孵化园首批拟入驻中试项目清单								
お建项目依托中试核強化 木参数一覧表					**/>				
お建项目依托中试楼強和 木参数一覧表									
					1000				
おります まります まりますす					4/2-1				
打建项目依托中试楼建筑大术参数一览表					A X SV				
打建项目依托中试楼建筑大术参数一览表					AXIV				
打建项目依托中试楼建筑大术参数一览表				l.	⊘ ′				
序号 建筑物名称 次灭类别 层数 建筑面积 (m) 建筑面积 (m) 1 1#中试楼 甲类 22.8 2032 2 2#中试楼 甲类 2F 22.8 2032 3 3#中试楼 甲类 2F 22.8 2032 4 4#中试楼 甲类 1F 17.7 1050 5 5#中试楼 甲类 2F 22.8 2675 6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014				Ž(A))=				
序号 建筑物名称 火灾类别 层数 建筑面积 (m) 建筑面积 (m) 1 1#中试楼 甲类 2F 22.8 2032 2 2#中试楼 甲类 2F 22.8 2032 3 3#中试楼 甲类 1F 17.7 1050 5 5#中试楼 甲类 2F 22.8 2675 6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014			拟建筑	页目依托中试楼建筑;术参		<u> </u>			
2 2#中试楼 甲类 2F 22.8 2032 3 3#中试楼 甲类 1F 17.7 1050 4 4#中试楼 甲类 2F 22.8 2675 5 5#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014	序号	建筑物名称	火灾类别	层数	建筑高度(m)	建筑面积(m			
3 3#中试楼 甲类 2F 22.8 2032 4 4#中试楼 甲类 1F 17.7 1050 5 5#中试楼 甲类 2F 22.8 2675 6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014	1	1#中试楼	甲类	1/25	22.8	2032			
4 4#中试楼 甲类 1F 17.7 1050 5 5#中试楼 甲类 2F 22.8 2675 6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014	2	2#中试楼	甲类	2F	22.8	2032			
5 5#中试楼 甲类 2F 22.8 2675 6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014	3	3#中试楼	甲类	2F	22.8	2032			
6 6#中试楼 甲类 3F 22.8 4013 7 7#中试楼 甲类 3F 22.8 3014	4	4#中试楼	甲类	1F	17.7	1050			
7 7#中试楼 甲类 3F 22.8 3014	5	5#中试楼	甲类	2F	22.8	2675			
4.7	6	6#中试楼	甲类	3F	22.8	4013			
8 8#中试楼 3F 22.8 3014	7	7#中试楼	甲类	3F	22.8	3014			
	8	8#中试楼		3F	22.8	3014			
			1/2 I						
die 1			4 5						
			• •						
	<u> </u>	TO KY							
拟建项目公辅及环保工程组成一览表									

		
原辅料使用情	——————————————————————————————————————	
况		
	to the little of	
采取的环保措 施	4 Hillian	
	WETT !	
_		
	TRUE TO THE TOTAL PROPERTY OF THE PROPERTY OF	

T =									
-									
-						٠,٠٠٠			
-	各废气处理装置及排气筒主要参数:								
-				排放源参数 ***					
	位置 RTO 焚烧系统装置区		排气筒编号	高度	内径 1	烟气流速	设计风量		
				m	ng//3-1	m/s	m³/h		
-			FQ-1	25	1000	12.16	2.2 万		
	过程分析室		FQ-2	25	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	15.15	4万		
_	危废库		FQ-3	15	0.5	16.98	1.2 万		
_	危废库		FQ-4	15	0.5	16.98	1.2 万		
_		5水站	FQ-5	15	0.6	10.00	1万		
-	1#中试楼		FQ-6	23/37	0.6	13.26	1.35 万		
-	2#	中试楼	FQ-7	1/2×	0.8	11.61	2.1 万		
						ı			
_	种类	污染物名称	产生量	3 '	削减量	接管量	排放量		
		废水量	195 06		0	195613.06	195613.06		
污染物排放情 况		COD	- 17.605		25.096	32.509	5.868		
		SS	20.633		11.457	9.176	1.956		
		氨氮	0.608		0.181	0.427	0.293		
		TN W	0.984		0.130	0.854	0.782		
	rès I.	TP 3	0.312		0.227	0.085	0.059		
	废水	氟化物	0.112		0.027	0.085	0.078		
		ACRIT	0.112		0.000	0.112	0.196		
		公 拉类	1.379		0.952	0.427	0.196		
			0.971		0.757	0.214	0.196		
		盐分	18.848		14.576	4.272	4.303		
		LAS	0.000		0.000	0.000	0.000		

					XL iv	
_		二氧化硫	0.130	0.000	/ 1507	0.130
	废气	氮氧化物	8.118	0.188	/("\}	7.930
		颗粒物	4.128	3.082		1.046
		非甲烷总烃	107.033	102.874		4.159
		甲醇	0.240	0.199	/ /	0.041
		丙酮	0.200	0.162	Mrs.	0.038
		乙腈	0.200	0.162	/	0.038
		乙酸乙酯	0.800	0.648	/	0.152
		甲苯	29.116	28.29	/	0.893
		酚类	0.042	1 1 1 1 1 1 1 1 1 1	/	0.000
		甲基丙烯酸甲酯	57.676	35.957	/	1.719
		丙烯酸甲酯	1.814	1.759	/	0.055
		VOCs	197.121	190.027	/	7.094
		氯化氢	4.591	4.301	/	0.290
		溴化氢	0.140	0.132	/	0.008
		硫酸	,0 &	0.711	/	0.118
		氨	611	1.376	/	0.235
		硫化氢	0.216	0.180	/	0.036
		氟化氢	0.001	0.000	/	0.001
		二噁英	0.000	0.000	/	2.112mg/a
		氯气 >>	0.525	0.494	/	0.031
		CO A ST	0.500	0.000	/	0.500
		氢价	0.008	0.000	/	0.008
-	固废	危格爱物	4257.057	4257.057	/	0.000
		般固废	29.500	29.500	/	0.000
		生活垃圾	33.400	33.400	/	0.000
		A.(3)		•		

- 1、基地拟设置排气筒数量为7个;雨污水排口各设置1个。
- 2、执行标准
 - (1) 大气污染物排放标准
 - FQ-1: 《合成树脂工业污染物排放标准》(GB31572-2015,含 2024 年修改单)、《大气污染物综合排放标准》(DB32/4041-2021)
 - FQ-2: 《大气污染物综合排放标准》(DB32/4041-2021)
 - FO-3: 《大气污染物综合排放标准》(DB32/4041-2021)
 - FO-4: 《大气污染物综合排放标准》(DB32/4041-2021)
 - FQ-5: 《恶臭污染物排放标准》(GB14554-93)、《大气污染物综合排放标准》(DB32/40 2021)
 - FQ-6: 《大气污染物综合排放标准》 (DB32/4041-2021) 、《恶臭污染物排放标准》 (DB32/4041-2021)

 - (2) 污水接管、排放水质标准

排污口信息, 执行的标准 基地污水站排口污染物排放应满足泰兴经济开发区工业污水处理厂接管标准,根据开发区工业污水处理厂环评及批复的接管限值要求:①特征污染因子指标应结合企业具体工艺及排污特点,需符合其适用的所属行业的相关水污染物排放标准。如无适用的行业标准,则需满足《石油化学工业污染物排放标准》(GB31571-2015)表 3 中标准;②对于第一类废水污染物,应在生产车间或车间设施废水排放口处建达标后回用或直接作为危废收集处置,严禁外排。

依据开发区工业污水处理厂环评报告及批复,其尾水主要指抗之的、氨氮、总磷执行《地表水环境质量标准》(GB3838-2002)中IV类标准,其他污染因子执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级 A 标义 工业污水处理厂排污口废水进入友联中沟,通过友联中沟进入滨江中沟,最终通过洋思港排入长江。

(3) 雨水水质排放标准

本项目雨水排口执行《关于印发泰兴经济开发区选入步严格企业清下水(雨水)排放标准的通知》(泰经管〔2020〕144号)排放限值。

(4) 噪声排放标准

施工期执行《建筑施工场界环境噪声技术标准》(GB12523-2011),其中夜间噪声最大声级超过限值的幅度不得高于 15dB(A);运营期厂界噪声应执行《工业企业厂界环境噪声排放标准》(GB12348-2006)3类标准。

(5)固体废物控制标准

项目产生的一般工业固体。初贮存执行《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020),危险废物贮存执行《危险废物贮存污染控制标准》(GB18597-2023)、《盆族废物收集 贮存 运输技术规范》(HJ2025-2012)及《江苏省固体废物全过程环境监管工作意见》(苏环办〔2024〕16号)中相关规定要求进

	~	11.1 上层 克人萨勒 唯制有头边数垂毛进足人和盐酸去 九克尼坦桑耶 //九郎克勒	CH DIA CAN DE 14 CAN AND AND AND AND AND AND AND AND AND A					
	行危险废物的包装、贮存设施的选址、设计、运行、安全防护、监测和关闭等要求进行合理的贮存。危废标识按照《危险废物识别标志设置技术规范》(HJ 1276-2022)中							
	相关要求执行。							
77 1	项目厂房总体布局已严格按照《工业企业总平面设计规范》《建筑设计防火规范》(GB50016-2014)等国家有关法规及技术准的相关规定执行;运营过程中加强生产管							
环境风险防范	 理,工艺技术设计上均按照有关标准边	十规范》(GB50140-2005)等规范要求进行全						
措施	理;工艺技术设计上均按照有关标准进行设计、安装;按照《建筑设计防火规范》(GB50016-2014),《建筑灭火器的设计规范》(GB50140-2005)等规范要求进行全 厂的防火设计;设事故水池 1 座,总容积为 1500㎡,以接纳事故情况下排放的污水,保证事故情况下不向外环境的发气水。							
	厂的防火设计;设事故水池 1 座,总容积为 1500m³,以接纳事故情况下排放的污水,保证事故情况下不向外环境的大污水。 运营期废气污染源监测							
	监测点位置	运营期废气污染源监测 监测项目	监测频率					
		1 XXX	在线自动监测					
			1 次/季					
	DO 1 (DEO ## # T/d)		1 次/月					
	FQ-1(RTO 焚烧系统)		1 次/半年					
		""[2]	1 次/季					
		/v W	1 次/年					
	PO 4 (2+10 / 10 / 2)	THE THE PARTY OF T	在线自动监测					
	FQ-2(过程分析室)		1次/半年					
	FO. 2 FO. 4 / 各床床\	- X.M.,	在线自动监测					
*	FQ-3、FQ-4(危废库)	XV	1 次/半年					
环境例行监测	FO 5 (\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	4,	在线自动监测					
	FQ-5(污水站)	ŽŽ.	1 次/月					
	FQ-6	★ 17	1 次/月					
	FQ-7	- - - - - - - - -	1 次/月					
		, WK,	1 次/季					
	运营期废水污染源监测							
	监测点位置	监测项目	监测频率					
	污水站出水口(外排水缓冲池)	COD、氨氮、总氮、TP、氟化物、氯化物、石油类、AOX、LAS、甲苯等	1 次/月					
		pH 值、COD、氨氮、TN、TP,流量	自动监测					
	废水接管口	COD、氨氮,流量	1 次/周					
	(外排水池)	pH 值、SS、TN、TP、石油类、硫化物	1 次/月					
	~~~~ <u> </u>	氟化物、可吸附有机卤化物(AOX)	1 次/季					

1 次/半年 其他废水污染物 每日监测一次 pH值、化学需氧量、SS (排放期间按日监测) 雨水排放口 pH值、COD 自动监测 噪声监测 监测项目: 昼间和夜间的厂界噪声值。 监测点位: 基地四个厂界处。 监测时间和频次:每季度一次。 地下水监测计划 监测点位:根据导则,对于三级评价项目,项目运行期跟踪监测点的布置一般不少于1个(1)监测层位:潜水含水层,采样深度:水位以下1.0m之内(2)监测因子:除放射性指标外的常规37项及特征指标因子。(3)监测频率:每年监测一次。 土壤监测计划 监测点位: 危废库区域、污水站区域、中试区废水收集罐(池套缸 监测指标: pH 值、45 项基本项目、石油烃(C₁₀~C₄₀)、二噁英文。 监测频次: 每 5 年监测一次 监测频次:每5年监测一次

(试行) (GB36600-2018)。

执行标准:《土壤环境质量 建设用地土壤污染风险条控体》

## 9.6. 污染物总量控制

#### 1、总量控制因子

THE THE RESIDENT OF THE PARTY O 根据本项目的排污特点和江苏省污染物排放总量控制要求,确定本项目污染物总量控制因 子为:

(1)废水

总量控制因子: COD、NH3-N、TN、TP;

(2)废气

总量控制因子: 颗粒物、VOCs、SO2、氮氧化物;

(3)固废

总量控制因子:工业固废排放量。

## 2、总量控制指标

根据表 4.12.4-1, 项目污染物排放总量指标如下:

(1)废水

接管考核量: 废水量 195613.06t/a、COD32.509t/a、 氮 0.427t/a、TP0.085t/a、TN0.854t/a;

最终外排量: 废水量 195613.06t/a、COD5.80t/a、氨氮 0.293t/a、TP0.059t/a、TN0.782t/a。

(2)废气

外排量: 二氧化硫 0.13t/a、氮氧化物 .930t/a、颗粒物 1.046t/a、VOCs7.094t/a。

(3) 固体废物

全部固体废物均得到有 零排放,无需申请总量指标。

园区储备库出库使用平衡。

355

#### 10. 结论与建议

#### 10.1. 结论

#### 10.1.1 建设项目概况

泰兴市襟江投资有限公司拟投资 50000 万元,于江苏省泰兴经济开发区锦江路南侧、院士路西侧地块建设"泰兴经济开发区中试孵化产业园项目",该项目已于 2025 年 6 月取得泰兴市数据局出具的《江苏省投资项目备案证》,备案证号:泰数据备(2025)2847 号。项目全场内容为建设中试厂房及配套公用工程和辅助设施,具体包括综合运维楼、中心控制室、门卫、甲类中试平台、综合仓库、甲类仓库、危废暂存库、动力车间(含 10kV 变电质 全压站、冷冻站、液氮站等)、综合水站(含消防泵房、循环水泵房、纯水房等)、污水预处理场(含污水处理辅助用房)、初期雨水及事故池、雨水监测间、废气处理(RTQ)、中试框架、地面火炬和管廊等,总建筑面积 42650 平方米。(说明:中试框架不在水水价范围内:地面火炬为后期预留的废气应急处置装置,本次不建设。)

## 10.1.2 环境质量现状

## (1)环境空气

根据项目所在区域 2023 年环境质量公报, 项目区域为环境空气质量不达标区,超标因子主要为 O₃;由补充监测数据可知,补充监测证方染物指标均满足《大气污染物综合排放标准详解》《环境影响评价技术导则 大气环态》(HJ2.2-2018)附录 D 及国外标准(二噁英类)等标准限值,区域环境空气质量良

#### (2)地表水

由监测结果可知:长城新面(W1~W3)各监测因子可达到《地表水环境质量标准》(GB3838-2002)中域水质标准,水质较好;洋思港断面(W4)氯化物、硫酸盐、硝酸盐出现超标,其他监测区子可达到IV类水质标准;友联中沟、滨江中沟能够满足IV类水标准,水质环境良好。

## (3) 地下水

大的监测结果可知:各监测点位的监测因子均能达到或优于《地下水质量标准》 GB/T14848-2017)中IV类及以上标准限值。

## (4)声环境

由监测结果可知: 厂界 4 个测点昼夜间噪声值均满足 3 类标准要求,表明建设项目所在地声环境较好,能满足《声环境质量标准》(GB3096-2008)中 3 类标准。

#### (5)土壤环境

由监测结果可知:项目厂区内、外土壤监测因子均符合《土壤环境质量建设用地土壤污染风险管控标准(试行)》(GB36600-2018)第二类用地筛选值,土壤质量现状较好。

## 10.1.3 污染物稳定达标排放

#### 1、废水

本项目及入驻企业废水经基地内污水站预处理后能够满足开发区工业污水处理厂接管标准,区域污水管网已铺设到位,可确保废水稳定达标接管,根据预测章节,本项目废水对策边水环境影响可接受。

#### 2、废气

本项目及入驻企业废气均采取了有效的废气收集及处置措施,经处理后被气均达标高空排放,对周边环境空气产生的影响可接受。

#### 3、固废

本项目及入驻企业产生的危险废物由中试基地负责收储, 发托有资质单位处置; 一般固废则由产废企业分类收集综合处置, 生活垃圾则委托环 清运, 固废实现零排放, 对周边环境产生的影响可接受。

#### 4、噪声

本项目高噪声源主要来源于中试装置、发发风机等公辅设施,以及废水处理风机等,在 采取选用低噪声设备、设备减振、厂房隔点、消声、绿化降噪等一系列隔声降噪措施后,昼夜 间噪声值达到《工业企业厂界环境运排放标准》(GB12348-2008)中的3类标准要求。

综上所述,本项目运营阶段产生的各种污染物皆能符合相关国家标准的规定,皆能够做到达标排放。

#### 10.1.4 公众意见采纳灌况

本次环评报告編制过程中建设单位依据《建设项目环境影响评价技术导则 总纲》(HJ2.1-2016)从及《环境影响评价公众参与办法》(生态环境部令2018年4号)等规范性文件要求,采取网络平台公示、报纸公示、张贴公告等方式开展了项目公众参与调查工作,公参调查过程中未收到群众反馈意见。

## **6.1.5** 环境功能区可达性

## ①地表水环境

项目废水经厂区自建污水处理站预处理达接管标准要求后,接管至开发区工业污水处理厂集中处理,尾水排入长江。故本项目废水对地表水体的影响可接受。

#### ②大气环境

项目废气经环保措施处理后均能达标排放,建设项目对大气环境的影响可接受。

## ③声环境

项目拟对各噪声设备采取有效的噪声控制措施,对外环境声环境的贡献值很小,对声环境 的影响可接受。

## ④固体废物

该项目产生的各种固体废物均将采取妥善的处理处置措施,不会对周围环境产生 对周围环境的影响可接受。

## 10.1.6 总量控制

项目建成后总量控制指标如下:

#### (1)废水

接管考核量: 废水量 195613.06t/a、COD32.509t/a、氨氮 0.427 最终外排量: 废水量 195613.06t/a、COD5.868t/a、氨 **493**t/a、TP0.059t/a、TN0.782t/a。 (2)废气

数 1.046t/a、VOCs7.094t/a。 外排量: 二氧化硫 0.13t/a、氮氧化物 7.930t/a

#### (3)固体废物

全部固体废物均得到有效处置,

## 10.1.7 总结论

本项目用地为工业用地:项目 染治理得当, 经有效处理后可保证污染物稳定达到相 关排放标准要求,对外环境影响可接受,不会降低区域功能类别。本项目制定环境风险应急预 案,经采取有效的事故防范分减缓措施,项目环境风险水平可控。因此,从环保的角度看,本 评价认为该项目在坚大 之同时"原则并采取一定的环保措施后,项目的建设是可行的。项目须 规模组织开展工作,如有变化须另行申报,不得建设化工类等工业化生 产项目。

试基地应增强自身及入驻企业环保意识,建立和健全环保管理网络及环保运行台账, 虽对各项环保设施的日常维修管理。

- (2)中试基地及入驻企业在管理与中试过程中应杜绝任何跑、冒、滴、漏等现象。
- (3)中试基地应加强固体废弃物的管理,对委托处理的固体废弃物进行跟踪管理,确保固废 的有效处理处置, 杜绝二次污染及转移污染; 并办妥污染物转移联单。

(4)中试基地及入驻企业必须建立完善的安全生产管理系统,建立健全事故防范措施及应急 措施。同时,该项目的建设应重视引进和建立先进的环保管理模式,完善管理机制,强化企业

WASTERN THE THE WASTERN THE STATE OF THE STA